首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serikov, Vladimir B., E. Heidi Jerome, Neal W. Fleming,Peter G. Moore, Frederick A. Stawitcke, and Norman C. Staub.Airway thermal volume in humans and its relation to body size.J. Appl. Physiol. 83(2): 668-676, 1997.The objective of this study was to investigate the influence ofvolume ventilation(E) andcardiac output () on the temperature of the expiredgas at the distal end of the endotracheal tube in anesthetized humans.In 63 mechanically ventilated adults, we used a step decrease in thehumidity of inspired gas to cool the lungs. After change from humid todry gas ventilation, the temperature of the expired gas decreased. Weevaluated the relationship between the inverse monoexponential timeconstant of the temperature fall (1/) and eitherE or . WhenE wasincreased from 5.67 ± 1.28 to 7.14 ± 1.60 (SD) l/min(P = 0.02), 1/ did not changesignificantly [from 1.25 ± 0.38 to 1.21 ± 0.51 min1,P = 0.81]. In the 11 patients in whom changed during the study period(from 5.07 ± 1.81 to 7.38 ± 2.45 l/min,P = 0.02), 1/ increasedcorrespondingly from 0.89 ± 0.22 to 1.52 ± 0.44 min1(P = 0.003). We calculated the airwaythermal volume (ATV) as the ratio of the measured values to 1/ and related it to the body height (BH):ATV (liters) = 0.086 BH (cm)  9.55 (r = 0.90).

  相似文献   

2.
The mechanism(s)limiting muscle O2 uptake(O2) kinetics wasinvestigated in isolated canine gastrocnemius muscles(n = 7) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% of peakO2). Two conditions weremainly compared: 1) spontaneousadjustment of blood flow () [control, spontaneous (C Spont)]; and2) pump-perfused, adjusted ~15 s before contractions at aconstant level corresponding to the steady-state value duringcontractions in C Spont [faster adjustment ofO2 delivery (FastO2 Delivery)]. During FastO2 Delivery, 1-2 ml/min of102 M adenosine wereinfused intra-arterially to prevent inordinate pressure increases withthe elevated . The purpose of the study was todetermine whether a faster adjustment ofO2 delivery would affectO2 kinetics. was measured continuously; arterial(CaO2) and popliteal venous(CvO2)O2 contents were determined atrest and at 5- to 7-s intervals during contractions;O2 delivery was calculated as · CaO2,and O2 was calculated as · arteriovenous O2 content difference. Times toreach 63% of the difference between baseline and steady-stateO2 during contractions were23.8 ± 2.0 (SE) s in C Spont and 21.8 ± 0.9 s in FastO2 Delivery (not significant). Inthe present experimental model, elimination of any delay inO2 delivery during therest-to-contraction transition did not affect muscleO2 kinetics, which suggeststhat this kinetics was mainly set by an intrinsic inertia of oxidativemetabolism.

  相似文献   

3.
Proctor, David N., Kenneth C. Beck, Peter H. Shen, Tamara J. Eickhoff, John R. Halliwill, and Michael J. Joyner. Influence ofage and gender on cardiacoutput-O2 relationshipsduring submaximal cycle ergometry. J. Appl.Physiol. 84(2): 599-605, 1998.It is presentlyunclear how gender, aging, and physical activity status interact todetermine the magnitude of the rise in cardiac output(c) during dynamic exercise. To clarify this issue,the present study examined thec-O2 uptake(O2) relationship duringgraded leg cycle ergometry in 30 chronically endurance-trained subjects from four groups (n = 6-8/group): younger men (20-30 yr), older men (56-72yr), younger women (24-31 yr), and older women(51-72 yr). c (acetylene rebreathing), strokevolume (c/heart rate), and whole bodyO2 were measured at restand during submaximal exercise intensities (40, 70, and ~90% of peakO2). Baseline restinglevels of c were 0.6-1.2 l/min less in theolder groups. However, the slopes of thec-O2relationship across submaximal levels of cycling were similar among allfour groups (5.4-5.9 l/l). The absolute cassociated with a given O2(1.0-2.0 l/min) was also similar among groups. Resting andexercise stroke volumes (ml/beat) were lower in women than in men butdid not differ among age groups. However, older men and women showed areduced ability, relative to their younger counterparts, to maintainstroke volume at exercise intensities above 70% of peakO2. This latter effect wasmost prominent in the oldest women. These findings suggest that neitherage nor gender has a significant impact on thec-O2 relationships during submaximal cycle ergometry among chronically endurance-trained individuals.

  相似文献   

4.
O'Hagan, Kathleen P., Susan M. Casey, and Philip S. Clifford. Muscle chemoreflex increases renalsympathetic nerve activity during exercise. J. Appl.Physiol. 82(6): 1818-1825, 1997.Activation ofthe muscle chemoreflex increases sympathetic drive to skeletal musclein humans. This study investigated whether activation of the musclechemoreflex augments the renal sympathetic nerve activity (RSNA)response to dynamic exercise in rabbits. The muscle chemoreflex wasevoked by hindlimb ischemia during exercise on a motorized treadmill.Seven New Zealand White rabbits performed a nonischemic controlprotocol and a hindlimb ischemia protocol in which terminal aorticblood flow (ta) was reduced to 51 ± 2% ofpreocclusion ta by partial aortic occlusion after 1.5 min of exercise. Mean arterial pressure (MAP), heart rate, RSNA andta increased in response to exercise and weresimilar between trials during the first 1.5 min of exercise. In thecontrol trial, ta, MAP, and RSNA were stable at anelevated level through an additional 3.5 min of exercise. Hindlimbischemia produced a potent pressor response that plateaued after 2.5 min (+17 ± 4 mmHg, where  designates change). RSNA began toincrease after 1.5 min of ischemic exercise and was significantlyelevated relative to preocclusion RSNA at 2.5 (+25 ± 9%) and3.5 (+47 ± 12%) min of occlusion. These results suggest thatthe muscle chemoreflex can augment sympathoexcitatory drive to thekidney during dynamic exercise.

  相似文献   

5.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

6.
Curtis, Scott E., Thomas A. Walker, W. E. Bradley, andStephen M. Cain. Raising P50increases tissue PO2 in canineskeletal muscle but does not affect criticalO2 extraction ratio.J. Appl. Physiol. 83(5):1681-1689, 1997.Affinity of hemoglobin (Hb) forO2 determines in part the rate ofO2 diffusion from capillaries tomyocytes by altering capillary PO2.We hypothesized that a decrease in HbO2 affinity (increasedP50) would increase capillary and tissue PO2(PtiO2) andimprove O2 consumption duringischemia. To test this hypothesis, blood flow to the pump-perfused lefthindlimb of 18 anesthetized and paralyzed dogs was progressively decreased over 90 min while hindlimb O2 consumption andO2 delivery (O2)and PtiO2 weremeasured at the muscle surface. Arterial PO2 was maintained at 150 ± 10 Torr in all dogs. We increased P50by 12.3 ± 0.9 (SE) Torr in nine dogs with RSR-13, an allosteric modifier of Hb. This decreased arterialO2 saturation to 90-92% butincreased meanPtiO2 from 35.5 ± 11.6 to 44.1 ± 15.2 (SD) Torr(P < 0.05) with no change incontrols (n = 9).O2 extraction ratio at criticalO2was 74 ± 2% in controls and 79 ± 1% in RSR-13-treated dogs(P = not significant).PtiO2 was30-40% higher in the RSR-13-treated group at anyO2above critical but did not differ between groups below criticalO2.Perfusion heterogeneity and convergence of the dissociation curvesnear criticalO2 may have mitigated any effect of increasedP50 onO2 diffusion. Still, increasingP50 by 12 Torr with RSR-13significantly increased PtiO2 atO2values above critical.

  相似文献   

7.
Charan, Nirmal B., Shane R. Johnson, S. Lakshminarayan,William H. Thompson, and Paula Carvalho. Nitric oxide and-adrenergic agonist-induced bronchial arterial vasodilation.J. Appl. Physiol. 82(2): 686-692, 1997.In anesthetized sheep, we measured bronchial blood flow(br) by an ultrasonic flow probe to investigate the interaction between inhaled nitric oxide (NO; 100 parts/million) givenfor 5 min and 5 ml of aerosolized isoetharine (1.49 × 102 M concentration).NO and isoetharine increased br from 26.5 ± 6.5 to 39.1 (SE) ± 10.6 and 39.7 ± 10.7 ml/min,respectively (n = 5).Administration of NO immediately after isoetharine further increasedbr to 57.3 ± 15.1 ml/min. NO synthase inhibitorN-nitro-L-arginine methyl esterhydrochloride (L-NAME; 30 mg/kg, in 20 ml salinegiven iv) decreased br to 14.6 ± 2.6 ml/min. NO given three times alternately with isoetharine progressively increased br from 14.6 ± 2.6 to 74.3 ± 17.0 ml/min, suggesting that NO and isoetharine potentiatevasodilator effects of each other. In three other sheep, afterL-NAME, three sequential doses of isoetharine increased br from 10.2 ± 3.4 to11.5 ± 5.7, 11.7 ± 4.7, and 13.3 ± 5.7 ml/min,respectively, indicating that effects of isoetharine are predominantlymediated through synthesis of NO. When this was followed by threesequential administrations of NO, br increased by146, 172, and 185%, respectively. Thus in the bronchial circulationthere seems to be a close interaction between adenosine3,5-cyclic monophosphate- and guanosine3,5-cyclic monophosphate-mediated vasodilatation.

  相似文献   

8.
Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes   总被引:1,自引:0,他引:1  
During maximalexercise, ventilation-perfusion inequality increases, especially inathletes. The mechanism remains speculative. Wehypothesized that, if interstitial pulmonary edema is involved, prolonged exercise would result in increasing ventilation-perfusion inequality over time by exposing the pulmonary vascular bed to highpressures for a long duration. The response to short-term exercise wasfirst characterized in six male athletes [maximal O2 uptake(O2 max) = 63 ml · kg1 · min1] by using 5 minof cycling exercise at 30, 65, and 90%O2 max. Multiple inert-gas, blood-gas, hemodynamic, metabolic rate, and ventilatory data were obtained. Resting log SD of the perfusion distribution (logSD) was normal [0.50 ± 0.03 (SE)] and increased with exercise (logSD = 0.65 ± 0.04, P < 0.005), alveolar-arterialO2 difference increased (to 24 ± 3 Torr), and end-capillary pulmonary diffusion limitation occurred at 90%O2 max. The subjectsrecovered for 30 min, then, after resting measurements were taken,exercised for 60 min at ~65%O2 max.O2 uptake, ventilation, cardiacoutput, and alveolar-arterial O2difference were unchanged after the first 5 min of this test, but logSD increased from0.59 ± 0.03 at 5 min to 0.66 ± 0.05 at 60 min(P < 0.05), without pulmonary diffusion limitation. LogSD was negativelyrelated to total lung capacity normalized for body surface area(r = 0.97,P < 0.005 at 60 min). These data are compatible with interstitial edema as a mechanism and suggest that lungsize is an important determinant of the efficiency of gas exchangeduring exercise.

  相似文献   

9.
To simulate theimmediate hemodynamic effect of negative intrathoracic pressure duringobstructive apneas in congestive heart failure (CHF), without inducingconfounding factors such as hypoxia and arousals from sleep, eightawake patients performed, at random, 15-s Mueller maneuvers (MM) attarget intrathoracic pressures of 20 (MM 20) and40 cmH2O (MM 40),confirmed by esophageal pressure, and 15-s breath holds, as apneic timecontrols. Compared with quiet breathing, at baseline, before theseinterventions, the immediate effects [first 5 cardiac cycles(SD), P values refer to MM 40compared with breath holds] of apnea, MM 20, and MM 40 were, for left ventricular (LV) systolic transmural pressure (Ptm), 1.0 ± 1.9, 7.2 ± 3.5, and 11.3 ± 6.8 mmHg(P < 0.01); for systolic bloodpressure (SBP), 2.9 ± 2.6, 5.5 ± 3.4, and 12.1 ± 6.8 mmHg (P < 0.01); and forstroke volume (SV) index, 0.4 ± 2.8, 4.1 ± 2.8, and6.9 ± 2.3 ml/m2(P < 0.001), respectively.Corresponding values over the last five cardiac cycles were for LVPtm6.4 ± 4.4, 5.4 ± 6.6, and 4.5 ± 9.1 mmHg (P < 0.01); for SBP6.9 ± 4.2, 8.2 ± 7.7, and 24.2 ± 6.9 mmHg (P < 0.01); and for SVindex 0.4 ± 2.1, 5.2 ± 2.8, and 9.2 ± 4.8 ml/m2(P < 0.001), respectively.Thus, in CHF patients, the initial hemodynamic response to thegeneration of negative intrathoracic pressure includes an immediateincrease in LV afterload and an abrupt fall in SV. The magnitude ofresponse is proportional to the intensity of the MM stimulus. By theend of a 15-s MM 40, LVPtm falls below baseline values, yet SVand SBP do not recover. Thus, when 40cmH2O intrathoracic pressure issustained, additional mechanisms, such as a drop in LV preload due toventricular interaction, are engaged, further reducing SV. The neteffect of MM 40 was a 33% reduction in SV index (from 27 to 18 ml/min2), and a 21% reductionin SBP (from 121 to 96 mmHg). Obstructive apneas can have adverseeffects on systemic and, possibly, coronary perfusion in CHF throughdynamic mechanisms that are both stimulus and timedependent.

  相似文献   

10.
Training-induced alterations of glucose flux in men   总被引:5,自引:0,他引:5  
Friedlander, Anne L., Gretchen A. Casazza, Michael A. Horning, Melvin J. Huie, and George A. Brooks. Training-induced alterations of glucose flux in men. J. Appl.Physiol. 82(4): 1360-1369, 1997.We examined thehypothesis that glucose flux was directly related to relative exerciseintensity both before and after a 10-wk cycle ergometer trainingprogram in 19 healthy male subjects. Two pretraining trials [45and 65% of peak O2 consumption(O2 peak)] andtwo posttraining trials (same absolute and relative intensities as 65%pretraining) were performed for 90 min of rest and 1 h of cyclingexercise. After training, subjects increasedO2 peak by9.4 ± 1.4%. Pretraining, the intensity effect on glucose kinetics was evident with rates of appearance(Ra; 5.84 ± 0.23 vs. 4.73 ± 0.19 mg · kg1 · min1),disappearance (Rd; 5.78 ± 0.19 vs. 4.73 ± 0.19 mg · kg1 · min1),oxidation (Rox; 5.36 ± 0.15 vs. 3.41 ± 0.23 mg · kg1 · min1),and metabolic clearance (7.03 ± 0.56 vs. 5.20 ± 0.28 ml · kg1 · min1)of glucose being significantly greater(P  0.05) in the 65% than the 45%O2 peak trial. WhenRd was expressed as a percentage of total energy expended per minute(Rd E), there was nodifference between the 45 and 65% intensities. Training did reduceRa (4.63 ± 0.25),Rd (4.65 ± 0.24),Rox (3.77 ± 0.43), andRd E (15.30 ± 0.40 to12.85 ± 0.81) when subjects were tested at the same absolute workload (P  0.05). However, whenthey were tested at the same relative workload,Ra,Rd, andRd E were not different,although Rox was lowerposttraining (5.36 ± 0.15 vs. 4.41 ± 0.42, P  0.05). These results show1) glucose use is directly relatedto exercise intensity; 2) trainingdecreases glucose flux for a given power output;3) when expressed as relativeexercise intensity, training does not affect the magnitude of bloodglucose use during exercise; 4)training alters the pathways of glucose disposal.

  相似文献   

11.
Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response toinhaled -agonists. J. Appl.Physiol. 84(1): 215-221, 1998.We studied thedose-dependent effects of inhaled isoetharine HCl, a -adrenergicbronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow(br) in anesthetized sheep. Isoetharine resulted ina dose-dependent increase in br. With atotal dose of 17.5 mg, br increased from baselinevalues of 22 ± 3.4 (SE) to 60 ± 16 ml/min(P < 0.001), an effect independentof changes in cardiac output and systemic arterial pressure. To furtherstudy whether synthesis of endogenous nitric oxide (NO) affects-agonist-induced increases in br, weadministered isoetharine (20 mg) by inhalation before and after theNO-synthase inhibitorN-nitro-L-argininemethyl ester (L-NAME).Intravenous L-NAME (30 mg/kg) rapidly decreased br by ~80% of baseline,whereas L-NAME via inhalation(10 mg/kg) resulted in a delayed and smaller (~22%) decrease.Pretreatment with L-NAME viaboth routes of administration attenuated bronchial arterialvasodilation after subsequent challenge with isoetharine. We concludethat isoetharine via inhalation increases br in adose-dependent manner and that -agonist-induced relaxation ofvascular smooth muscle in the bronchial vasculature is partiallymediated via synthesis of NO.

  相似文献   

12.
Grassi, Bruno, Claudio Marconi, Michael Meyer, Michel Rieu,and Paolo Cerretelli. Gas exchange and cardiovascular kinetics with different exercise protocols in heart transplant recipients. J. Appl. Physiol. 82(6): 1952-1962, 1997.Metabolicand cardiovascular adjustments to various submaximal exercises wereevaluated in 82 heart transplant recipients (HTR) and in 35 controlsubjects (C). HTR were tested 21.5 ± 25.3 (SD) mo (range1.0-137.1 mo) posttransplantation. Three protocols were used:protocol A consisted of 5 min of rectangular 50-W load repeatedtwice, 5 min apart [5 min rest, 5 min 50 W (Ex 1), 5 minrecovery, 5 min 50 W (Ex 2)]; protocol B consistedof 5 min of rectangular load at 25, 50, or 75 W; protocol Cconsisted of 15 min of rectangular load at 25 W. Breath-by-breathpulmonary ventilation (E),O2 uptake (O2),and CO2 output(CO2) were determined.During protocol A, beat-by-beat cardiacoutput () was estimated by impedance cardiography. The half times (t1/2) of the on- andoff-kinetics of the variables were calculated. In all protocols,t1/2 values forO2 on-,E on-, andCO2 on-kinetics were higher(i.e., the kinetics were slower) in HTR than in C, independently ofworkload and of the time posttransplantation. Also,t1/2 on- was higher in HTRthan in C. In protocol A, no significant difference of t1/2 O2on- was observed in HTR between Ex 1 (48 ± 9 s) and Ex2 (46 ± 8 s), whereas t1/2 on- was higher during Ex 1 (55 ± 24 s)than during Ex 2 (47 ± 15 s). In all protocols and for all variables, the t1/2 off-values were higher in HTRthan in C. In protocol C, no differences of steady-stateE,O2, andCO2 were observed in bothgroups between 5, 10, and 15 min of exercise. We conclude that1) in HTR, a "priming" exercise, while effective inspeeding up the adjustment of convective O2 flow to muscle fibers during a second on-transition, did not affect theO2 on-kinetics, suggestingthat the slower O2 on- inHTR was attributable to peripheral (muscular) factors; 2) thedissociation between on- andO2 on-kinetics in HTRindicates that an inertia of muscle metabolic machinery is the mainfactor dictating theO2 on-kinetics; and 3) theO2 off-kinetics was slowerin HTR than in C, indicating a greater alactic O2 deficitin HTR and, therefore, a sluggish muscleO2 adjustment.

  相似文献   

13.
George, Kelley. Dynamic resistance exercise and restingblood pressure in adults: a meta-analysis. J. Appl.Physiol. 82(5): 1559-1565, 1997.With the use ofthe meta-analytic approach, the purpose of this study was to examinethe effects of dynamic resistance exercise, i.e., weight training, onresting systolic and diastolic blood pressure in adults. A total ofnine studies consisting of 259 subjects (144 exercise, 115 control) and18 groups (9 exercise, 9 control) were included in this analysis. Withthe use of the bootstrap technique (10,000 samples), significant treatment effect(3)reductions were found across all designs and categories for bothsystolic and diastolic blood pressure [systolic, mean ± SD = 4.55 ± 1.75 mmHg, 95% confidence interval (CI) = 1.56 to 8.56; diastolic, mean ± SD = 3.79 + 1.12 mmHg, 95% confidence interval CI = 1.89 to6.33]. 3 changescorresponded with relative decreases of ~3 and 4% in restingsystolic and diastolic blood pressure, respectively. Inconclusion, meta-analytic review of included studies suggests thatdynamic resistance exercise reduces resting systolic and diastolicblood pressure in adults. However, it is premature to form strongconclusions regarding the effects of dynamic resistance exercise onresting blood pressure. A need exists for additional, well-designedstudies on this topic before a recommendation can be made regarding theefficacy of dynamic resistance exercise as a nonpharmacological therapyfor reducing resting blood pressure in adults, especially inhypertensive adults.

  相似文献   

14.
Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue   总被引:3,自引:0,他引:3  
Babcock, Mark A., David F. Pegelow, Bruce D. Johnson, andJerome A. Dempsey. Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue. J. Appl.Physiol. 81(5): 2156-2164, 1996.We usedbilateral phrenic nerve stimulation (BPNS; at 1, 10, and 20 Hz atfunctional residual capacity) to compare the amount of exercise-induceddiaphragm fatigue between two groups of healthy subjects, a high-fitgroup [maximal O2consumption (O2 max) = 69.0 ± 1.8 ml · kg1 · min1,n = 11] and a fit group(O2 max = 50.4 ± 1.7 ml · kg1 · min1,n = 13). Both groups exercised at88-92% O2 maxfor about the same duration (15.2 ± 1.7 and 17.9 ± 2.6 min forhigh-fit and fit subjects, respectively,P > 0.05). The supramaximal BPNS test showed a significant reduction (P < 0.01) in the BPNS transdiaphragmatic pressure (Pdi) immediatelyafter exercise of 23.1 ± 3.1% for the high-fit group and23.1 ± 3.8% (P > 0.05)for the fit group. Recovery of the BPNS Pdi took 60 min in both groups.The high-fit group exercised at a higher absolute workload, whichresulted in a higher CO2production (+26%), a greater ventilatory demand (+16%) throughout theexercise, and an increased diaphragm force output (+28%) over theinitial 60% of the exercise period. Thereafter, diaphragm force outputdeclined, despite a rising minute ventilation, and it was not differentbetween most of the high-fit and fit subjects. In summary, the high-fitsubjects showed diaphragm fatigue as a result of heavy enduranceexercise but were also partially protected from excessive fatigue,despite high ventilatory requirements, because their hyperventilatoryresponse to endurance exercise was reduced, their diaphragm wasutilized less in providing the total ventilatory response, and possiblytheir diaphragm aerobic capacity was greater.

  相似文献   

15.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

16.
Katz, Stuart D., Jeannette Yuen, Rachel Bijou, and ThierryH. LeJemtel. Training improves endothelium-dependent vasodilation in resistance vessels of patients with heart failure.J. Appl. Physiol. 82(5):1488-1492, 1997.The effects of physical training onendothelium-dependent vasodilation in skeletal muscle resistance vessels were investigated in patients with heart failure. Forearm bloodflows(ml · min1 · 100 ml1) in response tobrachial arterial administration of acetylcholine (5 × 105 and 5 × 104 M at 1 ml/min) andnitroglycerin (5 × 106 and 5 × 105 M at 1 ml/min) weredetermined by strain-gauge venous occlusion plethysmography before andafter 8 wk of daily handgrip exercise in 12 patients with chronic heartfailure. After 8 wk of daily handgrip exercise, the vasodilatoryresponses to acetylcholine significantly increased from pretrainingvalues, i.e., 16.6 ± 2.0 vs. 8.6 ± 1.3 ml · min1 · 100 ml1(P < 0.05) and 27.5 ± 1.5 vs. 14.6 ± 1.7 ml · min1 · 100 ml1(P < 0.05), respect- ively,whereas the vasodilatory responses to nitroglycerin did notchange. Handgrip exercise training appears to specificallyenhance endothelium-dependent vasodilation in the forearm skeletalmuscle circulation of patients with heart failure.

  相似文献   

17.
Age alters the cardiovascular response to direct passive heating   总被引:7,自引:0,他引:7  
Duringdirect passive heating in young men, a dramatic increase in skin bloodflow is achieved by a rise in cardiac output (c) andredistribution of flow from the splanchnic and renal vascular beds. Toexamine the effect of age on these responses, seven young (Y; 23 ± 1 yr) and seven older (O; 70 ± 3 yr) men were passively heated withwater-perfused suits to their individual limit of thermal tolerance.Measurements included heart rate (HR), c (byacetylene rebreathing), central venous pressure (via peripherally inserted central catheter), blood pressures (by brachial auscultation), skin blood flow (from increases in forearm blood flow by venous occlusion plethysmography), splanchnic blood flow (by indocyanine green clearance), renal blood flow (byp-aminohippurateclearance), and esophageal and mean skin temperatures.c wassignificantly lower in the older than in the young men (11.1 ± 0.7 and 7.4 ± 0.2 l/min in Y and O, respectively, at the limit ofthermal tolerance; P < 0.05),despite similar increases in esophageal and mean skin temperatures andtime to reach the limit of thermal tolerance. A lower stroke volume (99 ± 7 and 68 ± 4 ml/beat in Y and O, respectively, P < 0.05), most likely due to anattenuated increase in inotropic function during heating, was theprimary factor for the lower c observed inthe older men. Increases in HR were similar in the young and older men;however, when expressed as a percentage of maximal HR, the older menrelied on a greater proportion of their chronotropic reserve to obtainthe same HR response (62 ± 3 and 75 ± 4% maximal HR in Y andO, respectively, P < 0.05). Furthermore, the older men redistributed less blood flow from thecombined splanchnic and renal circulations at the limit of thermaltolerance (960 ± 80 and 720 ± 100 ml/min in Y and O,respectively, P < 0.05). As a resultof these combined attenuated responses, the older men had asignificantly lower increase in total blood flow directed to the skin.

  相似文献   

18.
Gonzalez, Norberto C., Richard L. Clancy, Yoshihiro Moue,and Jean-Paul Richalet. Increasing maximal heart rate increases maximal O2 uptake in ratsacclimatized to simulated altitude. J. Appl.Physiol. 84(1): 164-168, 1998.Maximal exerciseheart rate (HRmax) is reducedafter acclimatization to hypobaric hypoxia. The lowHRmax contributes to reducemaximal cardiac output(max) andmay limit maximal O2 uptake(O2 max). Theobjective of these experiments was to test the hypothesisthat the reduction inmax afteracclimatization to hypoxia, due, in part, to the lowHRmax, limitsO2 max. Ifthis hypothesis is correct, an increase in max wouldresult in a proportionate increase inO2 max. Rats acclimatized to hypobaric hypoxia [inspiredPO2(PIO2) = 69.8 ± 3 Torr for 3 wk] exercised on a treadmill in hypoxic (PIO2 = 71.7 ± 1.1 Torr) or normoxic conditions(PIO2 = 142.1 ± 1.1 Torr). Each rat ran twice: in one bout the rat was allowed to reach itsspontaneous HRmax, which was 505 ± 7 and 501 ± 5 beats/min in hypoxic and normoxic exercise,respectively; in the other exercise bout,HRmax was increased by 20% to the preacclimatization value of 600 beats/min by atrial pacing. This resulted in an ~10% increase inmax, since theincrease in HRmax was offset by a10% decrease in stroke volume, probably due to shortening of diastolicfilling time. The increase inmax was accompanied by a proportionate increase in maximal rate of convective O2 delivery(max × arterial O2 content), maximal workrate, and O2 max inhypoxic and normoxic exercise. The data show that increasingHRmax topreacclimatization levels increasesO2 max, supportingthe hypothesis that the lowHRmax tends to limitO2 max after acclimatization to hypoxia.

  相似文献   

19.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

20.
Langsetmo, I., G. E. Weigle, M. R. Fedde, H. H. Erickson, T. J. Barstow, and D. C. Poole.O2 kinetics in thehorse during moderate and heavy exercise. J. Appl.Physiol. 83(4): 1235-1241, 1997.The horse is asuperb athlete, achieving a maximalO2 uptake (~160ml · min1 · kg1)approaching twice that of the fittest humans. Although equine O2 uptake(O2) kinetics arereportedly fast, they have not been precisely characterized, nor hastheir exercise intensity dependence been elucidated. To addressthese issues, adult male horses underwent incremental treadmill testingto determine their lactate threshold (Tlac) and peakO2(O2 peak),and kinetic features of their O2 response to"square-wave" work forcings were resolved using exercisetransitions from 3 m/s to abelow-Tlac speed of 7 m/s or anabove-Tlac speed of 12.3 ± 0.7 m/s (i.e., between Tlac and O2 peak) sustainedfor 6 min. O2 andCO2 output were measured using anopen-flow system: pulmonary artery temperature was monitored, and mixedvenous blood was sampled for plasma lactate.O2 kinetics at work levelsbelow Tlac were well fit by atwo-phase exponential model, with a phase2 time constant(1 = 10.0 ± 0.9 s) thatfollowed a time delay (TD1 = 18.9 ± 1.9 s). TD1 was similar tothat found in humans performing leg cycling exercise, but the timeconstant was substantially faster. For speeds aboveTlac,TD1 was unchanged (20.3 ± 1.2 s); however, the phase 2 time constantwas significantly slower (1 = 20.7 ± 3.4 s, P < 0.05) than for exercise belowTlac. Furthermore, in four of fivehorses, a secondary, delayed increase inO2 became evident135.7 ± 28.5 s after the exercise transition. This "slowcomponent" accounted for ~12% (5.8 ± 2.7 l/min) of the netincrease in exercise O2. Weconclude that, at exercise intensities below and aboveTlac, qualitative features ofO2 kinetics in the horseare similar to those in humans. However, at speeds belowTlac the fast component of theresponse is more rapid than that reported for humans, likely reflectingdifferent energetics of O2utilization within equine muscle fibers.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号