首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.  相似文献   

2.
 The distribution of S-100 protein and its α- and β-subunits in bovine exocrine glands was studied by indirect immunohistochemistry. The entire spectrum of salivary glands, glands of the respiratory tract, intestinal glands, male and female genital glands, and skin glands was examined. S-100 and its β-subunit were identified in most serous secretory cells of mixed salivary glands, although secretory acini in some serous glands remained unreactive for these antigens. Mucous cells were constantly negative; mucoid cells were positive in the lacrimal and Harderian gland. The α-subunit of S-100 protein was identified in serous cells but the staining reaction was faint. Subunits of S-100 showed a characteristic distribution along the excretory duct systems of compound glands: S-100 and the β-subunit were present in intercalated duct epithelium, while striated duct epithelium stained for S100-α. Therefore, it is suggested that S100-α is related to resorption and secretion in striated ducts, while S100-β may govern acinar exocytosis and probably regulates proliferation and differentiation of glandular cells. Differing staining intensities for S-100 and its subunits in secretory cells of exocrine glands most probably indicate functional differences with regard to secretory activity and the cell cycle. Accepted: 11 February 1997  相似文献   

3.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

4.
The serous lingual glands of von Ebner secrete lingual lipase, an enzyme that begins fat digestion in the stomach. The objective of this study was to characterize the neuromodulators in the rat tongue and von Ebner glands using immunocytochemical techniques. Rat lingual tissues were fixed in formalin, embedded in paraffin and sectioned at 4 microns for light microscopic studies. Immunocytochemical localization of neuromodulators was performed with monospecific anti-rat neuromodulator IgG or control (preimmune) IgG as the primary antibody, using the peroxidase-antiperoxidase (PAP) technique. No staining was seen with control anti-rat IgG. Immunospecific staining for vasoactive intestinal peptide (VIP), tyrosine hydroxylase and choline acetyltransferase (CHAT) was observed in nerves in the tongue, and cells containing immunospecific staining for serotonin (5-hydroxytryptamine) were seen in the stroma between the lingual glands. Selected cells in the serous glands stained positively for the presence of substance P and somatostatin. Adrenergic, VIP-containing and cholinergic nerves appear to innervate the tongue and serous glands. Substance P and somatostatin were identified in cells of the lingual serous glands and may be additional local modulators regulating lingual lipase release.  相似文献   

5.
Summary The serous lingual glands of von Ebner secrete lingual lipase, an enzyme that begins fat digestion in the stomach. The objective of this study was to characterize the neuromodulators in the rat tongue and von Ebner glands using immunocytochemical techniques. Rat lingual tissues were fixed in formalin, embedded in paraffin and sectioned at 4 m for light microscopic studies. Immunocytochemical localization of neuromodulators was performed with monospecific anti-rat neuromodulator IgG or control (preimmune) IgG as the primary antibody, using the peroxidase-antiperoxidase (PAP) technique. No staining was seen with control antirat IgG. Immunospecific staining for vasoactive intestinal peptide (VIP), tyrosine hydroxylase and choline acetyltransferase (CHAT) was observed in nerves in the tongue, and cells containing immunospecific staining for serotonin (5-hydroxytryptamine) were seen in the stroma between the lingual glands. Selected cells in the serous glands stained positively for the presence of substance P and somatostatin. Adrenergic, VIP-containing and cholinergic nerves appear to innervate the tongue and serous glands. Substance P and somatostatin were identified in cells of the lingual serous glands and may be additional local modulators regulating lingual lipase release.  相似文献   

6.
The Zn-alpha 2-glycoprotein (Zn-alpha 2-GP) is present at a high concentration in the seminal plasma and at significant levels in other human body fluids. Its precise localization, however, has remained unclear, as well as its physiological and pathological significance. The present study reports the immunohistochemical localization of this protein in normal adult human tissues. Localization of the reactive product to anti-human plasma Zn-alpha 2-GP antibody was demonstrated in the following cells: luminal and basal cells of the prostate gland, luminal epithelial cells of the acini and of some ducts of the mammary glands, luminal cells of the secretory portion of the eccrine and apocrine sweat glands, serous cells of the salivary, tracheal, and bronchial glands, acinar cells of the esophageal glands, exocrine acinar cells of the pancreas, hepatocytes of the liver, and epithelial cells of the proximal and distal tubules in the kidney. The present results suggest that Zn-alpha 2-GP exerts some unknown but fairly widespread exocrine function and may be produced in the various epithelial cells tested. Hepatocytes are also suggested to be a source of the protein in the blood plasma.  相似文献   

7.
The enzyme Na+,K+-ATPase was localized immunohistochemically in major salivary glands of mouse, rat, and human and in exorbital lacrimal glands of the rodents. Immunoreactive Na+,K+-ATPase was abundant in the basolateral membranes of all epithelial cells lining striated and intra- and interlobular ducts of all glands. Reactivity of intercalated ducts varied among gland type and species. Cells lining granular ducts in rodent submandibular gland showed a heterogeneous staining pattern in rat but stained homogeneously in mouse. Secretory cells varied greatly in their content of immunoreactive Na+,K+-ATPase. As with all duct cells, staining was present only at the basolateral surface and was never observed at the luminal surface of reactive secretory cells. Mucous cells failed to show any reactivity in any gland examined. Serous cells showed a gradient of immunostaining intensity ranging from strongly positive in demilunes of human sublingual gland to negative in rat submandibular gland and lacrimal glands of rats and mice. The presence of basolaterally localized Na+,K+-ATPase in most serous cells but not in mucous cells suggests that the enzyme contributes to the ion and water content of copious, low-protein serous secretions. The intense immunostaining of cells in most if not all segments of the duct system supports the idea that the ducts are involved with modification of the primary saliva, and extends this concept to include all segments of the duct system.  相似文献   

8.
Summary Actin and myosin were localized in various salivary glands (parotid, submandibular, sublingual, lingual and Harderian gland) and the exocrine pancreas of rats by indirect immunofluorescence microscopy using specific rabbit antibodies against chicken gizzard myosin and actin. A bright immunofluorescent staining with both antibodies was observed at three main sites: (1) In myoepithelial cells of all salivary glands, (2) in secretory gland cells underneath the cell membrane bordering the acinar lumen (except Harderian and mucous lingual gland), and (3) in epithelial cells of the various secretory ducts (of all glands) in similar distribution as in acinar cells. The present immunohistochemical findings in acinar cells could lend further support to a concept suggesting that myosin and actin are involved in the process of transport and exocytosis of secretory granules.Supported by grants form Deutsche Forschungsgemeinschaft (Dr. 91/1, Ste. 105/19 and U. 34/4). We thank Mrs. Ursula König, Mrs. Christine Mahlmeister and Miss Renate Steffens for excellent technical assistance.  相似文献   

9.
We prepared in rabbits an antiserum against low molecular weight protease inhibitor (LMI) purified from the sputum of patients with purulent bronchitis. Using this antiserum in an immunoperoxidase staining method we found that this inhibitor was located exclusively in the serous cells of the submucosal glands of human upper and lower airways. The inhibitor was localized also in serous cells of the sublingual and submandibular glands. In contrast, LMI could not be demonstrated in the serous cells of the parotid gland. In the tissues investigated a strong association between the localization of the protease inhibitor and lysozyme was observed. Our observations indicate that the inhibitor may be present together with lysozyme as a secretory product in the serous cell granules. The possible consequences of the coexistence of these two proteins in the defense mechanism of the respiratory tract is discussed.  相似文献   

10.
Submandibular acinar glands secrete numerous proteins such as digestive enzymes and defense proteins on the basis of the exocrine secretion mode. Exocytosis is a complex process, including a soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion of vesicles and target membrane and the additional activation of cytoskeletal proteins. Relevant data are available predominantly for animal salivary glands, especially of the rat parotid acinar cells. The authors investigated the secretory molecular machinery of acinar (serous) cells in the human submandibular gland by immunohistochemistry and immunofluorescence and found diverse proteins associated with exocytosis for the first time. SNAP-23, syntaxin-2, syntaxin-4, and VAMP-2 were localized at the luminal plasma membrane; syntaxin-2 and septin-2 were expressed in vesicles in the cytoplasm. Double staining of syntaxin-2 and septin-2 revealed a colocalization on the same vesicles. Lactoferrin and α-amylase served as a marker for secretory vesicles and were labeled positively together with syntaxin-2 and septin-2 in double-staining procedures. Cytoskeletal components such as actin, myosin II, cofilin, and profilin are concentrated at the apical plasma membrane of acinar submandibular glands. These observations complement the understanding of the complex exocytosis mechanisms.  相似文献   

11.
Summary A light microscopic histochemical investigation of endogenous peroxidase activity in specimens of the submandibular salivary glands of man, hamster, rabbit, dog and guinea pig was carried out. A modification of the original Graham and Karnovsky diaminobenzidine (DAB)-hydrogen peroxide method was employed at different pH's.At all pH's (6.0, 7.6, and 9.0) a positive DAB reaction was found: in serous acinar cells in four of seven human submandibular glands, in convoluted tubule cells of the hamster, in acinar tissue, in secretory granular tubule cells and in the saliva of the guinea pig. This staining pattern was not markedly affected by KCN or 2,4-dichlorophenol (DCP). Furthermore, small cytoplasmic granules in collecting ducts of the dog displayed positive, KCN- and DCP-resistant DAB staining at all pH's tested. No reaction was observed in the acinar cells of the dog and rabbit glands.Mitochondrial oxidation of DAB in the striated duct cells occurred in all of the glands examined. Optimal staining of these cells was obtained at pH 6.0, but there was also strong positive staining at pH 7.6. At pH 9.0, however, the staining of the striated duct cells was very faint. The positive reaction in the striated duct cells was completely abolished by KCN.  相似文献   

12.
We examined the distribution of the 34-kilodalton (34-kD) tyrosine kinase substrate in tissues of adult and embryonic chicken using both a mouse monoclonal antibody and a rabbit polyclonal antibody raised against the affinity purified 34 kD protein. We analyzed the localization by immunoblotting of tissue extracts, by immunofluorescence staining of frozen tissue sections, and by staining sections of paraffin-embedded organs by the peroxidase antiperoxidase method. The 34-kD protein was present in a variety of cells, including epithelial cells of the skin, gastrointestinal, and respiratory tracts, as well as in fibroblasts and chondrocytes of connective tissue and mature cartilage, and endothelial cells of blood vessels. The 34-kD protein was also found in subpopulations of cells in thymus, spleen, bone marrow, and bursa. The protein was not detected in cardiac, skeletal, or smooth muscle cells, nor in epithelial cells of liver, kidney, pancreas, and several other glands. Although most neuronal cells did not contain the 34-kD protein, some localized brain regions did contain detectable amounts of this protein. The 34-kD protein was not detected in actively dividing cells of a number of tissues. Changes in the distribution of the 34-kD protein were observed during the differentiation or maturation of cells in several tissues including epithelial cells of the skin and gastrointestinal tract, fibroblasts of connective tissue, and chondroblasts.  相似文献   

13.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

14.
Intercellular secretory capillaries in parotid glands, eccrine sweat glands and intracellular secretory capillaries in parietal cells of gastric glands were demonstrated histo-chemically by the use of the Wachstein-Meisel adenosinetriphosphatase (ATPase) technique in the rabbit, rat and guinea pig. However, with the Wachstein-Meisel 5-nucleotidase technique, secretory capillaries were not stained. For parotid glands, optimal incubation in ATPase substrate mixture was: in rabbit, 15 min; in rat, 2.5 hr; and in guinea pig, 2 hr. For eccrine sweat glands, optimal incubation was 15 min in rabbit, 30 min in rat and 15 min in guinea pig. For parietal cells of gastric glands, optimal incubation was 3 hr for all three species. Secretory capillaries were best demonstrated in the parotid by using rabbit tissue; in eccrine sweat glands, with rat tissue, and in parietal cells, guinea pig tissue. Since ATPase activity in cell membranes of secretory cells may play a part in the mechanism of transport of secretory products from their place of formation in the acini to the excretory ducts, the Wachstein-Meisel ATPase technique can therefore be used successfully for staining secretory capillaries in many of the exocrine glands of laboratory mammals.  相似文献   

15.
The human salivary mucins MG1 and MG2 are well characterized biochemically and functionally. However, there is disagreement regarding their cellular and glandular sources. The aim of this study was to define the localization and distribution of these two mucins in human salivary glands using a postembedding immunogold labeling method. Normal salivary glands obtained at surgery were fixed in 3% paraformaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M or LR Gold resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N-terminal synthetic peptide of MG2, followed by gold-labeled goat anti-rabbit IgG. The granules of all mucous cells of the submandibular and sublingual glands were intensely reactive with anti-MG1. No reaction was detected in serous cells. With anti-MG2, the granules of both mucous and serous cells showed reactivity. The labeling was variable in both cell types, with mucous cells exhibiting a stronger reaction in some glands and serous cells in others. In serous granules, the electron-lucent regions were more reactive than the dense cores. Intercalated duct cells near the acini displayed both MG1 and MG2 reactivity in their apical granules. In addition, the basal and lateral membranes of intercalated duct cells were labeled with anti-MG2. These results confirm those of earlier studies on MG1 localization in mucous cells and suggest that MG2 is produced by both mucous and serous cells. They also indicate differences in protein expression patterns among salivary serous cells.  相似文献   

16.
We cloned a rat gene that is expressed primarily in the sublingual gland and named the predicted 503 amino-acid protein SLAMP (sublingual acinar membrane protein). SLAMP has 63% homology with human ERGIC-53-like protein, a member of the family of animal L-type lectins. Using a cDNA probe for SLAMP mRNA and rabbit antisera against SLAMP, we examined the expression and localization of SLAMP in major rat organs and tissues. With both Northern and Western blot analyses, abundant expression of SLAMP was demonstrated predominantly in the sublingual gland, with single sizes of the mRNA and protein 1.8 kb and 50 kDa, respectively, but not in other organs or tissues, including the parotid and submandibular glands. With immunohistochemistry, SLAMP was localized to the mucous acinar cells, but not to the serous demilunes or the duct system. With immunoelectron microscopy, SLAMP was localized predominantly to regions corresponding to the ER-Golgi intermediate compartment. Besides the sublingual gland, SLAMP immunoreactivity was also demonstrated in mucous cells of the minor salivary glands in oral cavity and of Brunner's glands in the duodenum. These results suggested that rat SLAMP plays a specific role in the early secretory pathway of glycoproteins in specific types of mucous cells.  相似文献   

17.
In mammalian species, cyclic AMP receptor proteins (cARP) are the regulatory (R) subunits of cyclic AMP-dependent protein kinase (PKA), the cellular effector of cyclic AMP-mediated signal transduction. An isoform of the PKA type II R subunit (RII), cARP, is a polyfunctional protein, present in most tissues and cells. It is expressed in salivary and other glands of rodents, and secreted into the saliva of rats and Man. The aim of the present study was to determine the expression of cARP in human salivary glands using immunoelectron microscopy. Thin sections of normal salivary glands embedded in LR Gold resin were labeled with anti-cARP primary antibody, then with gold-conjugated secondary antibody. Labeling was present in the secretory granules and cytoplasm of parotid, submandibular (SMG) and sublingual gland serous cells. Quantitative analysis showed considerable variability in granule labeling from sample to sample, indicating shifts in expression and cellular location of cARP. Unlike rodent salivary glands, the granules of intercalated and striated duct cells also were labeled. The cytoplasm and granules of mucous cells of the SMG and sublingual glands were unlabeled, while the Golgi complex and filamentous bodies in these cells showed moderate reactivity. Mitochondria and nuclei of both serous and mucous cells were unlabeled. Labeling also was present in the connective tissue adjacent to the epithelial cells. The results indicate that serous cells of the parotid and SMG are the major source of salivary cARP. They also reveal significant species differences in the glandular distribution of RII. RII binds to cytoskeletal and nuclear proteins, and may function to regulate extracellular cyclic AMP levels. Thus, the tissue and cellular distribution of RII may serve as an index of regulation of gene expression and cell differentiation.  相似文献   

18.
The granulosa cell secretes a protein (follicle regulatory protein: FRP) that affects the responsiveness of other follicles to gonadotropin stimulation. This protein was purified, partially characterized, and rabbit antisera as well as monoclonal antibodies were prepared against FRP. Fixed sections of porcine ovaries were prepared on slides and then incubated with the monoclonal antibody or polyclonal antisera and then incubated with either biotinylated mouse IgM or rabbit IgG antisera, respectively. These sections were then incubated with avidin conjugated to horseradish peroxidase, followed by substrate. Staining with both the monoclonal antibody and the antisera was present in the cytoplasm of granulosa cells of small- or medium-sized antral follicles. Staining distribution was localized preferentially to cells near the basal lamina; the antral granulosa cells of viable follicles did not stain. Neither primordial follicles nor pre-antral follicles (less than 300 microns in diameter) showed any positive staining. Thecal cells were not stained in follicles less than 5 mm in diameter, whereas some large follicles (greater than 5 mm) contained staining in the theca. In the latter, specific granulosa staining was only weakly positive with the polyclonal antibody and negative with the monoclonal antibody. Atretic follicles contained significant staining of all epithelial cells adjacent to the basal lamina by both the monoclonal and polyclonal antibody preparations. Staining of the luteal ovary by the monoclonal antibody was limited to the large luteal cells. These findings suggest that FRP is produced by the granulosa cells of porcine follicles at the stage of maturation corresponding to 0.5 mm in diameter. As the viable follicle increases in size, production of FRP in the granulosa is reduced below the detectable level when the follicle exceeds 5 mm in diameter. The main source of FRP during the luteal phase is the large cell of the corpus luteum.  相似文献   

19.
1. Complexing proteins isolated from the soluble and particulate fractions of rabbit kidney homogenates are structurally similar to complexing protein from human kidney. 2. The distribution of soluble and particulate complexing protein in other rabbit tissues is also similar to humans. 3. As in human kidney, complexing protein is localized in the glomeruli and proximal tubules of rabbit kidney. 4. The rabbit appears to be an appropriate animal model for the study of the adenosine deaminase complexing proteins in humans.  相似文献   

20.
Rab3 proteins are small GTP-binding proteins known to play a role in regulated exocytosis processes. This study examines the expression of Rab3 mRNA and protein in bovine, rat and human parathyroid glands. mRNAs of several Rab3 isoforms were detected in bovine (Rab3A, Rab3B and Rab3C) and rat (Rab3A, Rab3B and Rab3D) parathyroid glands by RT-PCR and sequencing. Rab3A protein was detected in the cytosolic extract from bovine parathyroid gland by Western blotting using a monoclonal antibody for Rab3A. Rab3A protein was localized to parathyroid hormone-containing chief cells by immunohistochemical staining. Subcellular localization of Rab3A protein by immunogold electron microscopy revealed that the majority of Rab3A protein was not associated with dense-core vesicles, but localized in the cytosol of the chief cells. Altogether, our results demonstrate that Rab3 isoforms are expressed in parathyroid chief cells, suggesting that they may play a role in regulated exocytosis in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号