首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Available data relating duration of +GZ stress to blood gas exchange status is limited. Furthermore, studies focusing on pulmonary gas exchange during +GZ stress when abdominal restriction is imposed have yielded conflicting results. To examine the time course of blood gas changes occurring during exposure to +GZ stress in dogs and the influence of G-suit abdominal bladder inflation on this time course, seven spontaneously breathing pentobarbital-anesthetized adult mongrel dogs were exposed to 60 s of up to +5 GZ stress with and without G-suit abdominal bladder inflation. Arterial and mixed venous blood were sampled for blood gas analysis during the first and last 20 s of the exposure and at 3 min postexposure. Little change in blood gas status was seen at +3 GZ regardless of G-suit status. However, with G-suit inflation, arterial PO2 fell by a mean of 14.7 Torr during the first 20 s at +4 Gz (P less than 0.01, t test) and 20.6 Torr at +5 GZ (P less than 0.01). It continued to fall an additional 10 Torr during the next 40 s at both +4 and +5 GZ. Arterial PO2 was still 5-10 Torr below control values (P less than 0.05) 3 min postexposure. A second series of experiments paralleling the first focused on blood gas status during repeated exposure to acceleration. Blood gas status was assessed in five dogs during the late 20 s of two 60-s exposures separated by 3 min at 0 GZ. No significant differences between the initial and repeated exposures were detected. The data indicate that G-suit abdominal bladder inflation promotes increased venous admixture.  相似文献   

2.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

3.
Measurements of right ventricular pressure in miniature swine were made at +Gz levels from +1 through +9 Gz. Polyethylene catheters were chronically placed in the cranial vena cava of five 2-yr-old female miniature swine (35-50 kg). The catheters were large enough to allow the introduction of a Millar pressure transducer into the venous system for placement in the right heart. The animals were fitted with an abdominal anti-G suit, restrained in a fiberglass couch, and exposed to the various +Gz levels on a centrifuge while fully conscious and unanesthetized. Right ventricular pressure and heart rate were measured during and for 2 min following 30-s exposures to each level of +Gz stress. The maximum right ventricular systolic pressure observed during +Gz was 200 Torr at +5 Gz with the maximum diastolic pressure being 88 Torr observed at +5 Gz. Mean heart rates were 200-210 beats/min at all levels of +Gz greater than or equal to +3 Gz when the animal remained stable. Mean maximum right ventricular pressures during +Gz stress were observed to increase through +5 Gz (85 Torr) and to decrease at higher levels of +Gz, indicating that through +5 Gz there is at least a partial compensation during acceleration stress. Decompensation in response to the stress began to occur during acceleration above +5 Gz with all animals decompensating during +9 Gz.  相似文献   

4.
In the present experiments it was decided to have each test-subject serve as his own control by fitting the test-subjects with a G-suit and comparing the condition of inflated G-suit to the normal situation. G-suit inflation was intended to only displace blood on the venous side of the circulation, not to increase total peripheral resistance. Therefore, a very modest inflation of 50 mmHg was applied. This was considered sufficient to expel most of the blood from the venous pool in abdomen and legs, even under the condition of increased G-loading in the pull-up phase. The parabolas were to be undergone in three body positions: standing upright, sitting and supine. The prediction of the experimental outcome was that we would find no difference between transients with and without G-suit inflation in the supine position, that an initial overshoot in pressure and stroke volume in the upright position would be very much damped by the G-suit, even more in the standing than in the sitting position. Studies were performed in 5 flights of NASA's KC-135, in January 1993. Per flight 40 parabolas were flown in an adapted 'roller coaster profile', i.e. 0-G phases were followed by a 2-G pull-out phase, after a very brief 1-G phase again followed by the next 2-G pull-up phase. This sequence was flown for 10 parabolas, then a 1-G horizontal flight period was inserted. The first 3 parabolas of each set of 10 the subjects were sitting upright, seat belt fastened. The next three they were standing, feet stuck under a load strap on the floor, stabilizing themselves by a grip on the ceiling. Then three parabolas were flown with the test-subject supine, loosely attached to the floor by a load strap and further aided by a grip to another strap on the floor. The last parabola of a set was used as 'spare' to repeat any failed maneuver.  相似文献   

5.
Blood pressure, pulse rate (PR), serum osmolality and electrolytes, as well as plasma vasopressin (PVP) and plasma renin activity (PRA), were measured in five men and two women [mean age 38.6 +/- 3.9 (SE) yr] before, during, and after inflation of an antigravity suit that covered the legs and abdomen. After 24 h of fluid deprivation the subjects stood quietly for 3 h: the 1st h without inflation, the 2nd with inflation to 60 Torr, and the 3rd without inflation. A similar control noninflation experiment was conducted 10 mo after the inflation experiment using five of the seven subjects except that the suit was not inflated during the 3-h period. Mean arterial pressure increased by 14 +/- 4 (SE) Torr (P less than 0.05) with inflation and decreased by 15 +/- 5 Torr (P less than 0.05) after deflation. Pulse pressure (PP) increased by 7 +/- 2 Torr (P less than 0.05) with inflation and PR decreased by 11 +/- 5 beats/min (P less than 0.05); PP and PR returned to preinflation levels after deflation. Plasma volume decreased by 6.1 +/- 1.5% and 5.3 +/- 1.6% (P less than 0.05) during hours 1 and 3, respectively, and returned to base line during inflation. Inflation decreased PVP from 6.8 +/- 1.1 to 5.6 +/- 1.4 pg/ml (P less than 0.05) and abolished the significant rise in PRA during hour 1. Both PVP and PRA increased significantly after deflation: delta = 18.0 +/- 5.1 pg/ml and 4.34 +/- 1.71 ng angiotensin I X ml-1 X h-1, respectively. Serum osmolality and Na+ and K+ concentrations were unchanged during the 3 h of standing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We compared the rate of relaxation of the diaphragm (RRdi) after unilateral phrenic nerve stimulation, bilateral phrenic nerve stimulations, and short sharp voluntary contractions (sniffs). RRdi was measured as the maximum rate of decline in transdiaphragmatic pressure (Pdi) corrected for the change in Pdi [maximum relaxation rate (MRR)/delta Pdi], the time constant (tau) of the later exponential decline in Pdi, and the time to half relaxation (1/2 RT). In five subjects there was no difference in mean RRdi apart from a smaller MRR/delta Pdi (P less than 0.05) for left unilateral compared with either right unilateral or bilateral needle stimulation. However, RRdi varied unpredictably between unilateral and bilateral stimulation of the phrenic nerve in individual subjects. In the same five subjects, sniffs were found to have a slower RRdi than bilateral stimulations (MRR/delta Pdi 0.0064 +/- 0.0007 vs. 0.0074 +/- 0.0018/ms, tau 57.2 +/- 8.7 vs. 48.2 +/- 7.4 ms, 1/2 RT 108.9 +/- 10.9 vs. 73.9 +/- 6.0 ms; all P less than 0.05). The application and inflation of an abdominal binder to an external pressure of 60 mmHg resulted in a decrease in functional residual capacity (-710 +/- 70 ml), but there was no effect on relaxation parameters. Our findings suggest that in the evaluation of RRdi 1) unilateral hemidiaphragmatic stimulations may not accurately reflect the in vivo contractile properties of the diaphragm, 2) sniff maneuvers are not voluntary equivalents of phrenic nerve stimulations, and 3) RRdi is not affected by abdominal binder inflation up to 60 mmHg.  相似文献   

7.
With the advent of pressure breathing for +Gz (head-to-foot inertial loading) protection (PBG) and the development of improved extended coverage anti-G suits (ECGS) it has become important to expand our knowledge of the cardiopulmonary physiologic interrelationships of pressure breathing, anti-G suit protection, and the anti-G straining maneuver (AGSM). Although high levels of pressure breathing have been previously investigated, there was continuing concern within the aeromedical community regarding the introduction of COMBAT EDGE, a PBG system. Some of the concerns were: barotrauma, pneumothorax, air embolism, excessive transmural vascular pressures, possible cardiac valvular damage, and possible overdilation of the right ventricle from a surge in venous return following +Gz. This study describes the experimental preparation and results of a hemodynamic investigation to address some of these concerns using chronically instrumented miniature swine (MS).  相似文献   

8.
We conducted a series of studies to develop and test a rapid, noninvasive method to measure limb venous compliance in humans. First, we measured forearm volume (mercury-in-Silastic strain gauges) and antecubital intravenous pressure during inflation of a venous collecting cuff around the upper arm. Intravenous pressure fit the regression line, -0.3 +/- 0.7 + 0.95 +/- 0.02. cuff pressure (r = 0.99 +/- 0.00), indicating cuff pressure is a good index of intravenous pressure. In subsequent studies, we measured forearm and calf venous compliance by inflating the venous collecting cuff to 60 mmHg for 4 min, then decreasing cuff pressure at 1 mmHg/s (over 1 min) to 0 mmHg, using cuff pressure as an estimate of venous pressure. This method produced pressure-volume curves fitting the quadratic regression (Deltalimb volume) = beta(0) + beta(1). (cuff pressure) + beta(2). (cuff pressure)(2), where Delta is change. Curves generated with this method were reproducible from day to day (coefficient of variation: 4.9%). In 11 subjects we measured venous compliance via this method under two conditions: with and without (in random order) superimposed sympathetic activation (ischemic handgrip exercise to fatigue followed by postexercise ischemia). Calf and forearm compliance did not differ between control and sympathetic activation (P > 0.05); however, the data suggest that unstressed volume was reduced by the maneuver. These studies demonstrate that venous pressure-volume curves can be generated both rapidly and noninvasively with this technique. Furthermore, the results suggest that although whole-limb venous compliance is under negligible sympathetic control in humans, unstressed volume can be affected by the sympathetic nervous system.  相似文献   

9.
Single-lung transplantation (SLT) in patients with emphysema leads to a cranial displacement of the diaphragm on the transplanted side and a shift of the mediastinum toward the transplanted lung. The objective of the present study was to assess the effect of unilateral lung inflation on the mechanics of the diaphragm. Two endotracheal tubes were inserted in the two main stem bronchi of six anesthetized dogs, and radiopaque markers were attached along muscle fibers in the midcostal region of the two halves of the diaphragm. The animals were then placed in a computed tomographic scanner, the left or the right lung was passively inflated, and the phrenic nerves were stimulated while the two endobronchial tubes were occluded. As lung volume increased, the fall in airway opening pressure (ΔPao) in the inflated lung during stimulation decreased markedly, whereas ΔPao in the noninflated lung decreased only moderately (P < 0.001). Also, the two hemidiaphragms shortened both during relaxation and during phrenic stimulation, but the ipsilateral hemidiaphragm was consistently shorter than the contralateral hemidiaphragm. In addition, the radius of curvature of the ipsilateral hemidiaphragm during stimulation increased, whereas the radius of the contralateral hemidiaphragm remained unchanged. These observations indicate that 1) in the presence of unilateral lung inflation, the respiratory action of the diaphragm is asymmetric; and 2) this asymmetry is primarily determined by the differential effect of inflation on the length and curvature of the two halves of the muscle. These observations also imply that in patients with emphysema, SLT improves the action of the diaphragm on the transplanted side.  相似文献   

10.
We tested the hypothesis that in normal subjects, cardiac tissue velocities, strain, and strain rates (SR), measured by Doppler tissue echocardiography (DTE), are preload dependent. To accomplish it, immediately preceding image acquisition, reversible, repeatable, acute nonpharmacological changes in preload were induced by parabolic flight. DTE has been proposed as a new approach to assess left ventricular regional myocardial function by computing tissue velocities, strain, and SR. However, preload dependence of these parameters in normal subjects still remains controversial. DTE images (Philips) were obtained in 10 normal subjects in standing upright position at normogravity (1 Gz), hypergravity (1.8 Gz), and microgravity (0 Gz) with and without -50 mmHg lower body negative pressure (LBNP). Myocardial velocity curves in the basal interventricular septum were reconstituted offline from DTE images, from which peak systolic (S'), early (E') and late (A') diastolic velocities, SR, and peak systolic strain (PSepsilon) were measured and averaged over four beats. At 1.8 Gz (reduced venous return), S', E', and A' decreased by 21%, 21%, and 26%, respectively, compared with 1-Gz values, while at 0 Gz (augmented venous return), E', A', and PSepsilon increased by 57%, 53%, and 49%, respectively. LBNP reduced E' and PSepsilon. In conclusion, our results were in agreement with those obtained in animal models, in which preload was changed in a controlled, acute, and reversible manner, and image acquisition was performed immediately following preload modifications. The hypothesis of preload dependence was confirmed for S', E', A', and PSepsilon, while SR appeared to be preload independent, probably reflecting intrinsic myocardial properties.  相似文献   

11.
When lung volume in animals is passively increased beyond total lung capacity (TLC; transrespiratory pressure = +30 cmH(2)O), stimulation of the phrenic nerves causes a rise, rather than a fall, in pleural pressure. It has been suggested that this was the result of inward displacement of the lower ribs, but the mechanism is uncertain. In the present study, radiopaque markers were attached to muscle bundles in the midcostal region of the diaphragm and to the tenth rib pair in five dogs, and computed tomography was used to measure the displacement, length, and configuration of the muscle and the displacement of the lower ribs during relaxation at seven different lung volumes up to +60 cmH(2)O transrespiratory pressure and during phrenic nerve stimulation at the same lung volumes. The data showed that 1) during phrenic nerve stimulation at 60 cmH(2)O, airway opening pressure increased by 1.5 ± 0.7 cmH(2)O; 2) the dome of the diaphragm and the lower ribs were essentially stationary during such stimulation, but the muscle fibers still shortened significantly; 3) with passive inflation beyond TLC, an area with a cranial concavity appeared at the periphery of the costal portion of the diaphragm, forming a groove along the ventral third of the rib cage; and 4) this area decreased markedly in size or disappeared during phrenic stimulation. It is concluded that the lung-deflating action of the isolated diaphragm beyond TLC is primarily related to the invaginations in the muscle caused by the acute margins of the lower lung lobes. These findings also suggest that the inspiratory inward displacement of the lower ribs commonly observed in patients with emphysema (Hoover's sign) requires not only a marked hyperinflation but also a large fall in pleural pressure.  相似文献   

12.
We studied the effect of 15-20 s of weightlessness on lung, chest wall, and abdominal mechanics in five normal subjects inside an aircraft flying repeated parabolic trajectories. We measured flow at the mouth, thoracoabdominal and compartmental volume changes, and gastric pressure (Pga). In two subjects, esophageal pressures were measured as well, allowing for estimates of transdiaphragmatic pressure (Pdi). In all subjects functional residual capacity at 0 Gz decreased by 244 +/- 31 ml as a result of the inward displacement of the abdomen. End-expiratory Pga decreased from 6.8 +/- 0.8 cmH2O at 1 Gz to 2.5 +/- 0.3 cmH2O at Gz (P less than 0.005). Abdominal contribution to tidal volume increased from 0.33 +/- 0.05 to 0.51 +/- 0.04 at 0 Gz (P less than 0.001) but delta Pga showed no consistent change. Hence abdominal compliance increased from 43 +/- 9 to 70 +/- 10 ml/cmH2O (P less than 0.05). There was no consistent effect of Gz on tidal swings of Pdi, on pulmonary resistance and dynamic compliance, or on any of the timing parameters determining the temporal pattern of breathing. The results indicate that at 0 G respiratory mechanics are intermediate between those in the upright and supine postures at 1 G. In addition, analysis of end-expiratory pressures suggests that during weightlessness intra-abdominal pressure is zero, the diaphragm is passively tensed, and a residual small pleural pressure gradient may be present.  相似文献   

13.
The rate of relaxation of the diaphragm after stimulated (4 subjects) and voluntary (8 subjects) contractions was compared in normal young men. Stimulated contractions were induced by supramaximal unilateral phrenic nerve stimulation and voluntary contractions by short, sharp sniffs of varying tensions against an occluded airway. The rate of relaxation of the diaphragm was calculated from the rate of decline of transdiaphragmatic pressure (Pdi). In both conditions the maximum relaxation rate (MRR) was proportional to the peak transdiaphragmatic pressure (Pdi), whereas the time constant (tau) of the later exponential decline in Pdi was independent of Pdi. The mean +/- SE rate constant of relaxation (MRR/Pdi) was 0.0078 +/- 0.0002 ms-1 and the mean tau was 57 +/- 3.8 ms for stimulated contractions. The rate of relaxation after sniffs was not different, and it was not affected by either the lung volume at which occluded sniffs were performed (in the range of residual volume to functional residual capacity + 1 liter) or by the relative contribution gastric pressure made to Pdi. After diaphragmatic fatigue was induced by inspiring against a high alinear resistance there was a decrease in relaxation rate. In the 1st min postfatigue MRR/Pdi decreased (0.0063 +/- 0.0003 ms-1; P less than 0.005) and tau increased (83 +/- 5 ms; P less than 0.005). Both values returned to prefatigue levels within 5 min of the end of the studies. We conclude that the sniff may prove to be clinically useful in the detection of diaphragmatic fatigue.  相似文献   

14.
Cerebral blood flow (CBF) velocity and cranial fluid volume, which is defined as the total volume of intra- and extracranial fluid, were measured using transcranial Doppler ultrasonography and rheoencephalography, respectively, in humans during graded increase of +Gz acceleration (onset rate: 0.1 G/s) without straining maneuvers. Gz acceleration was terminated when subjects' vision decreased to an angle of less than or equal to 60 degrees, which was defined as the physiological end point. In five subjects, mean CBF velocity decreased 48% from a baseline value of 59.4 +/- 11.2 cm/s to 31.0 +/- 5.6 cm/s (p<0.01) with initial loss of peripheral vision at 5.7 +/- 0.9 Gz. On the other hand, systolic CBF velocity did not change significantly during increasing +Gz acceleration. Cranial impedance, which is proportional to loss of cranial fluid volume, increased by 2.0 +/- 0.8% above the baseline value at the physiological end point (p<0.05). Both the decrease of CBF velocity and the increase of cranial impedance correlated significantly with Gz. These results suggest that +Gz acceleration without straining maneuvers decreases CBF velocity to half normal and probably causes a caudal fluid shift from both intra- and extracranial tissues.  相似文献   

15.
The application of lower body negative pressure (LBNP) is very useful method for simulation of +Gz stress and for evaluation of orthostatic reaction. The different physiological changes that occur during LBNP test and +Gz acceleration test are similar. Lategola and Trent found that supine LBNP exposure at the level of -50 mmHg may be equivalent to +2Gz in producing the changes of heart rate (HR). Polese and coworkers compared hemodynamic changes occurring during upright and supine LBNP at the levels to -70 mmHg with identical measurements made during accelerations to +2Gz, +3Gz, and +4Gz in the same subjects. They noted for example that HR changes during upright LBNP exceeded HR supine levels. Peak values of HR during +3Gz and +4Gz significantly exceeded HR levels during both kinds of LBNP, but HR values at +2Gz were equivalent to those at -40 mmHg of upright and -70 mmHg of supine LBNP. So, the present study was undertaken to evaluate adaptating responses to LBNP stimulus at the level of -60 mmHg, regulatory mechanisms of the circulatory system (central and peripheral) and to look for the possibility of +Gz tolerance prediction based on the changes of some hemodynamic parameters during LBNP.  相似文献   

16.
BACKGROUND: intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) attenuates Ca2+ m overload and lessens myocardial dysfunction in a rat model of VF and closed-chest resuscitation. METHODS: hearts were harvested from 10 groups of 6 rats each representing baseline, 15 min of untreated VF, 15 min of VF with chest compression given for the last 5 min (VF/CC), and 60 min postresuscitation (PR). VF/CC and PR included four groups each randomized to receive before starting chest compression the new NHE-1 inhibitor AVE4454B (1.0 mg/kg), the Na+ channel blocker lidocaine (5.0 mg/kg), their combination, or vehicle control. The left ventricle was processed for intracellular Na+ and Ca2+ m measurements. RESULTS: limiting sarcolemmal Na+ entry attenuated cytosolic Na+ increase during VF/CC and the PR phase and prevented Ca2+ m overload yielding levels that corresponded to 77% and 71% of control hearts at VF/CC and PR, without differences among specific Na+ -limiting interventions. Limiting sarcolemmal Na+ entry attenuated reductions in left ventricular compliance during VF and prompted higher mean aortic pressure (110 +/- 7 vs. 95 +/- 11 mmHg, P < 0.001) and higher cardiac work index (159 +/- 34 vs. 126 +/- 29 g x m x min(-1) x kg(-1), P < 0.05) with lesser increases in circulating cardiac troponin I at 60 min PR. CONCLUSIONS: Na+ -limiting interventions prevented excess Ca2+ m accumulation induced by ischemia and reperfusion and ameliorated myocardial injury and dysfunction.  相似文献   

17.
We studied the changes in breathing and respiratory muscle electromyograms (EMG) during passively induced increases in end-expiratory lung volume (EELV) in awake normal (N), hilar nerve-denervated (HND), carotid body-denervated (CBD), and HND + CBD ponies. EELV was increased by applying continuous negative pressure (-10 and -20 cmH2O) around the torso of the standing pony. In all groups, negative pressure produced sustained increases in EELV that were linearly related to the degree of negative pressure. Elevated EELV decreased breathing frequency (f) in N and CBD ponies but increased f in HND and HND + CBD ponies. When EELV was increased, tidal volume was unchanged or above control in N ponies but was below or near control in the other groups. In all groups during elevated EELV, arterial PCO2 initially decreased but then increased relative to control with isocapnia achieved after approximately 1.5 min. In all groups, the elevated EELV was accompanied by increased stimulation of the diaphragm as indicated by increased rate of rise of the integrated EMG (P less than 0.05). During elevated EELV, the duration of diaphragm EMG was reduced, but only in HND ponies was this reduction significant (P less than 0.05). In N ponies, the major effect of elevated EELV on the expiratory transversus abdominis (TA) muscle was an increase (P less than 0.05) in duration of activity and therefore total activity. The work of breathing was thus presumably shifted more to this muscle during elevated EELV. These changes in TA timing were not observed in HND and HND + CBD ponies during elevated EELV. We conclude that elevation of EELV, which presumably places the diaphragm on a less favorable portion of its length-tension relationship, results in compensatory increased stimulation of the diaphragm that is not critically dependent on hilar and carotid chemoreceptor afferents. However, hilar afferents do contribute to the changes in diaphragm and TA duration of activity during elevated EELV.  相似文献   

18.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

19.
We examined changes in cerebral circulation in 15 healthy men during exposure to mild +Gz hypergravity (1.5 Gz, head-to-foot) using a short-arm centrifuge. Continuous arterial pressure waveform (tonometry), cerebral blood flow (CBF) velocity in the middle cerebral artery (transcranial Doppler ultrasonography), and partial pressure of end-tidal carbon dioxide (ETco(2)) were measured in the sitting position (1 Gz) and during 21 min of exposure to mild hypergravity (1.5 Gz). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial pressure (MAP) and mean CBF velocity (MCBFV). Steady-state MAP did not change, but MCBFV was significantly reduced with 1.5 Gz (-7%). ETco(2) was also reduced (-12%). Variability of MAP increased significantly with 1.5 Gz in low (53%)- and high-frequency ranges (88%), but variability of MCBFV did not change in these frequency ranges, resulting in significant decreases in transfer function gain between MAP and MCBFV (gain in low-frequency range, -17%; gain in high-frequency range, -13%). In contrast, all of these indexes in the very low-frequency range were unchanged. Transfer from arterial pressure oscillations to CBF fluctuations was thus suppressed in low- and high-frequency ranges. These results suggest that steady-state global CBF was reduced, but dynamic cerebral autoregulation in low- and high-frequency ranges was improved with stabilization of CBF fluctuations despite increases in arterial pressure oscillations during mild +Gz hypergravity. We speculate that this improvement in dynamic cerebral autoregulation within these frequency ranges may have been due to compensatory effects against the reduction in steady-state global CBF.  相似文献   

20.
Tolerance to positive vertical acceleration (Gz) gravitational stress is reduced when positive Gz stress is preceded by exposure to hypogravity, which is called the "push-pull effect." The purpose of this study was to test the hypothesis that baroreceptor reflexes contribute to the push-pull effect by augmenting the magnitude of simulated hypogravity and thereby augmenting the stimulus to the baroreceptors. We used eye-level blood pressure as a measure of the effectiveness of the blood pressure regulatory systems. The approach was to augment the magnitude of the carotid hypertension (and the hindbody hypotension) when hypogravity was simulated by head-down tilt by mechanically occluding the terminal aorta and the inferior vena cava. Sixteen anesthetized Sprague-Dawley rats were instrumented with a carotid artery catheter and a pneumatic vascular occluder cuff surrounding the terminal aorta and inferior vena cava. Animals were restrained and subjected to a control gravitational (G) profile that consisted of rotation from 0 Gz to 90 degrees head-up tilt (+1 Gz) for 10 s and a push-pull G profile consisting of rotation from 0 Gz to 90 degrees head-down tilt (-1 Gz) for 2 s immediately preceding 10 s of +1 Gz stress. An augmented push-pull G profile consisted of terminal aortic vascular occlusion during 2 s of head-down tilt followed by 10 s of +1 Gz stress. After the onset of head-up tilt, the magnitude of the fall in eye-level blood pressure from baseline was -20 +/- 1.3, -23 +/- 0.7, and -28 +/- 1.6 mmHg for the control, push-pull, and augmented push-pull conditions, respectively, with all three pairwise comparisons achieving statistically significant differences (P < 0.01). Thus augmentation of negative Gz stress with vascular occlusion increased the magnitude of the push-pull effect in anesthetized rats subjected to tilting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号