首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-one X-linked recessive lethal and sterile mutations balanced by an unlinked X-chromosome duplication have been identified following EMS treatment of the small nematode, Caenorhabditis elegans. The mutations have been assigned by complementation analysis to 14 genes, four of which have more than one mutant allele. Four mutants, all alleles, are temperature-sensitive embryonic lethals. Twelve mutants, in ten genes, are early larval lethals. Two mutants are late larval lethals, and the expression of one of these is influenced by the number of X chromosomes in the genotype. Two mutants are maternal-effect lethals; for both, oocytes made by mutant hermaphrodites are rescuable by wild-type sperm. One of the maternal-effect lethals and two larval lethals are allelic. One mutant makes defective sperm. The lethals and steriles have been mapped by recombination and by complementation testing against 19 deficiencies identified after X-ray treatment. The deficiencies divide the region, about 15% of the X-chromosome linkage map, into at least nine segments. The deficiencies have also been used to check the phenotypes of hemizygous lethal and sterile hermaphrodites.  相似文献   

2.
We report the isolation and complementation mapping of lethal mutations within the 59AB region on the second chromosome of Drosophila melanogaster. The newly induced lethal mutations in this region define four different complementation groups. Using existing and newly induced deficiencies, these loci can be assigned to three different chromosomal intervals. Moreover, complementation analysis with chromosomes carrying various P element insertions, in combination with a molecular characterization of the corresponding insertion sites, suggests that the previously described male sterile mutation bellwether is an allele of an essential gene that encodes the alpha subunit of the mitochondrial ATP synthase.  相似文献   

3.
Five formaldehyde-induced deficiencies that uncover unc-22 IV, a gene affecting muscle structure in the nematode Caenorhabditis elegans were isolated and positioned. The largest deficiency, sDf2, extends in both directions from unc-22 and is approximately 1.0–2.0 map units in length. The other four deficiencies, sDf7, sDf8, sDf9 and sDf10, are all smaller than sDf2 and are located within the region uncovered by this deficiency. Thirty-seven ethyl methanesulfonate-induced lethal and sterile mutations linked to unc-22 were isolated and tested for complementation with sDf2. Nineteen lethal mutations failed to complement sDf2. Sixteen of these were further positioned by recombination mapping and also by deficiency mapping with sDf7, sDf8, sDf9 and sDf10. These sixteen mutations define 11 new essential genes in this region. Eight of the genes lie in a 0.9-map unit interval to the left of unc-22, whereas the three remaining genes lie in a region of about 0.2 map units to the right of unc-22. We believe that two of the essential genes identified in this study, let-56 and let-52, are the adjacent genes on either side of unc-22. The lethal mutations exhibit a wide range of terminal phenotypes: from first stage larva to sterile adult.  相似文献   

4.
The organization of essential genes in the unc-22 region, defined by the deficiency sDf2 on linkage group IV, has been studied. Using the balancer nT1 (IV;V), which suppresses recombination over 49 map units, 294 lethal mutations on LGIV(right) and LGV(left) were recovered using EMS mutagenesis. Twenty-six of these mutations fell into the unc-22 region. Together with previously isolated lethal mutations, there is now a total of 63 lethal mutations which fall into 31 complementation groups. Mutations were positioned on the map using eight overlapping deficiencies in addition to sDf2. The lethal alleles and deficiencies in the unc-22 region were characterized with respect to their terminal phenotypes. Mapping of these lethal mutations shows that sDf2 deletes a minimum of 1.8 map units and a maximum of 2.5 map units. A minimum estimate of essential gene number for the region using a truncated Poisson calculation is 48. The data indicate a minimum estimate of approximately 3500 essential genes in the Caenorhabditis elegans genome.  相似文献   

5.
Two dominant suppressors of crossing over have been identified following X-ray treatment of the small nematode C. elegans. They suppress crossing over in linkage group II (LGII) about 100-fold and 50-fold and are both tightly linked to LGII markers. One, called C1, segregates independently of all other linkage groups and is homozygous fertile. The other is a translocation involving LGII and X. The translocation also suppresses crossing over along the right half of X and is homozygous lethal. C1 has been used as a balancer of LGII recessive lethal and sterile mutations induced by EMS. The frequencies of occurrence of lethals and steriles were approximately equal. Fourteen mutations were assigned to complementation groups and mapped. They tended to map in the same region where LGII visibles are clustered.  相似文献   

6.
N. Perrimon  D. Smouse    GLG. Miklos 《Genetics》1989,121(2):313-331
We have conducted a genetic and developmental analysis of the 26 contiguous genetic complementation groups within the 19D3-20F2 interval of the base of the X chromosome, a region of 34 polytene bands delimited by the maroon-like and suppressor of forked loci. Within this region there are four loci which cause visible phenotypes but which have little or no effect on zygotic viability (maroon-like, little fly, small optic lobes and sluggish). There are 22 loci which, when mutated, are zygotic lethals and three of these, legless/runt, folded gastrulation and 13E3, have severe effects on embryonic development. In addition, three visible phenotypes have been defined only by overlapping deficiencies (melanized-like, tumorous head, and varied outspread). We have analyzed the lethal phases and maternal requirement of 58 mutations at 22 of the zygotic lethal loci by means of germline clone analysis using the dominant female sterile technique. Additionally, all lethal complementation groups, as well as a specific subset of deficiencies, have been studied histologically for defects in the development of the central and peripheral embryonic nervous systems.  相似文献   

7.
We have expanded our collection of recessive lethal and sterile mutants in the region of the X chromosome balanced by mnDp1(X;V), about 15% of the X linkage map, to a total of 54 mutants. The mutations have been mapped with respect to 20 overlapping deficiencies and five X duplications, and they have been assigned to 24 genes by complementation testing. Nine mutants are hermaphrodite-sterile: one of these is a sperm-defect mutant, two have abnormal gonadogeneses and six, in five genes, are maternally influenced mutants, producing inviable zygote progeny. One of the gonadogenesis mutants and two of the maternally influenced mutants are male fertile. All but one of the maternally influenced mutants give cross progeny when mated with wild-type males. Forty-three mutants were tested for suppression by homozygous sup-5(e1464), which is believed to be specific for null alleles. Ten mutants that were judged by independent criteria not to be null mutants are not suppressed. Nine of the other 33 mutants, in nine genes, are suppressed, five in both heterozygous and homozygous suppressor stocks and four only in homozygous suppressor stocks.  相似文献   

8.
The chromosomal region 36C on 2L contains two maternal-effect loci, dorsal (dl) and Bicaudal-D (Bic-D), which are involved in establishing polarity of the Drosophila embryo along the dorsal-ventral and anterior-posterior axes, respectively. To analyze the region genetically, we isolated X-ray-induced dorsal alleles, which we recognized by virtue of the haplo-insufficient temperature-sensitive dorsal-dominant phenotype in progeny of single females heterozygous for a mutagenized chromosome. From the 20,000 chromosomes tested, we isolated three deficiencies, two inversions with breakpoint in dl and one apparent dl point mutant. One of the deficiencies, Df(2L)H20 (36A6,7; 36F1,2) was used to screen for EMS-induced lethal- and maternal-effect mutants mapping in the vicinity of dl and Bic-D. We isolated 44 lethal mutations defining 11 complementation groups. We also recovered as maternal-effect mutations four dl alleles, as well as six alleles of quail and one allele of kelch, two previously identified maternal-effect genes. Through complementation tests with various viable mutants and deficiencies in the region, a total of 18 loci were identified in an interval of about 30 cytologically visible bands. The region was subdivided into seven subregions by deficiency breakpoints. One lethal complementation group as well as the two maternal loci, Bic-D and quail, are located in the same deficiency interval as is dl.  相似文献   

9.
We have performed an F2 genetic screen to identify lethal mutations that map to the 44D-45B region of the Drosophila melanogaster genome. By screening 8500 mutagenized chromosomes for lethality over Df(2R)Np3, a deficiency which encompasses nearly 1% of the D. melanogaster euchromatic genome, we recovered 125 lines with lethal mutations that represent 38 complementation groups. The lethal mutations have been mapped to deficiencies that span the 44D-45B region, producing an approximate map position for each complementation group. Lethal mutations were analyzed to determine the phase of development at which lethality occurred. In addition, we have linked some of the complementation groups to P element-induced lethals that map to 44D-45B, thus possibly providing new alleles of a previously tagged gene. Some of the complementation groups represent potentially novel alleles of previously identified genes that map to the region. Several genes have been mapped by molecular means to the 44D-45B region, but do not have any reported mutant alleles. This screen may have uncovered mutant alleles of these genes. The results of complementation tests with previously identified genes in 44D-45B suggests that over half of the complementation groups identified in this screen may be novel. Received: 13 July 1999 / Accepted: 4 November 1999  相似文献   

10.
We report the isolation and complementation mapping of lethal mutations within the 59AB region on the second chromosome of Drosophila melanogaster. The newly induced lethal mutations in this region define four different complementation groups. Using existing and newly induced deficiencies, these loci can be assigned to three different chromosomal intervals. Moreover, complementation analysis with chromosomes carrying various P element insertions, in combination with a molecular characterization of the corresponding insertion sites, suggests that the previously described male sterile mutation bellwether is an allele of an essential gene that encodes the alpha subunit of the mitochondrial ATP synthase. Received: 25 April 1998 / Accepted: 27 May 1998  相似文献   

11.
12.
We have conducted a genetic analysis of the region flanking the 68C glue gene cluster in Drosophila melanogaster by isolating lethal and semilethal mutations uncovered by deficiencies which span this region. Three different mutagens were used: ethyl methanesulfonate (EMS), ethyl nitrosourea (ENU) and diepoxybutane (DEB). In the region from 68A3 to 68C11, 64 lethal, semilethal, and visible mutations were recovered. These include alleles of 13 new lethal complementation groups, as well as new alleles of rotated, low xanthine dehydrogenase, lethal(3)517 and lethal(3)B76. Six new visible mutations from within this region were recovered on the basis of their reduced viability; all proved to be semiviable alleles of lethal complementation groups. No significant differences were observed in the distributions of lethals recovered using the three different mutagens. Each lethal was mapped on the basis of complementation with overlapping deficiencies; mutations that mapped within the same interval were tested for complementation, and the relative order of the lethal groups within each interval was determined by recombination. The cytological distribution of genes within the 68A3-68C11 region is not uniform: the region from 68A2,3 to 68B1,3 (seven to ten polytene chromosome bands) contains at least 13 lethal complementation groups and the mutation low xanthine dehydrogenase; the adjoining region from 68B1,3 to 68C5,6 (six to nine bands) includes the 68C glue gene cluster, but no known lethal or visible complementation groups; and the interval from 68C5,6 to 68C10,11 (three to five bands) contains at least three lethal complementation groups and the visible mutation rotated. The developmental stage at which lethality is observed was determined for a representative allele from each lethal complementation group.  相似文献   

13.
The chromosomal region surrounding the structural gene for α-glycerophosphate dehydrogenase (αGpdh, 2-20.5) of Drosophila melanogaster has been studied in detail. Forty-three EMS-induced recessive lethal mutations and five previously identified visible mutations have been localized within the 25A-27D region of chromosome 2 by deficiency mapping and in some cases by a recombination analysis. The 43 lethal mutations specify 17 lethal loci. αGpdh has been localized to a single polytene chromosome band, 25F5, and there apparently are no lethals that map to the αGpdh locus.  相似文献   

14.
Genomic sequences provide powerful new tools in genetic analysis, making it possible to combine classical genetics with genomics to characterize the genes in a particular chromosome region. These approaches have been applied successfully to the euchromatin, but analysis of the heterochromatin has lagged somewhat behind. We describe a combined genetic and bioinformatics approach to the base of the right arm of the Drosophila melanogaster second chromosome, at the boundary between pericentric heterochromatin and euchromatin. We used resources provided by the genome project to derive a physical map of the region, examine gene density, and estimate the number of potential genes. We also carried out a large-scale genetic screen for lethal mutations in the region. We identified new alleles of the known essential genes and also identified mutations in 21 novel loci. Fourteen complementation groups map proximal to the assembled sequence. We used PCR to map the endpoints of several deficiencies and used the same set of deficiencies to order the essential genes, correlating the genetic and physical map. This allowed us to assign two of the complementation groups to particular "computed/curated genes" (CGs), one of which is Nipped-A, which our evidence suggests encodes Drosophila Tra1/TRRAP.  相似文献   

15.
We have analyzed the 2E1-3A1 area of the X chromosome with special attention to loci related to embryogenesis. Published maps indicate that this chromosomal segment contains ten bands. Our genetic analysis has identified 11 complementation groups: one recessive visible (prune), two female steriles and eight lethals. One of the female sterile loci is fs(1)k10 for which homozygous females produce both egg chambers and embryos with a dorsalized morphology. The second female sterile is the paternally rescuable fs(1)pecanex in which unrescued embryos have a hypertrophic nervous system. Of the eight lethal complementation groups two are recessive embryonic lethals: hemizygous giant (gt) embryos possess segmental defects, and hemizygous crooked neck (crn) embryos exhibit a twisted phenotype. Analysis of these mutations in the female germ line indicates that gt does not show a maternal effect, whereas normal activity of crn is required for germ cell viability. Analysis of the maternal effect in germ line clones of the remaining six recessive lethal complementation groups indicates that four are required for germ cell viability and one produces ambiguous results for survival of the germ cells. The remaining, l(1)pole hole, is a recessive early pupal lethal in which embryos derived from germ line clones and lacking wild-type gene activity exhibit the "torso" or "pole hole" phenotype.  相似文献   

16.
E. M. Rinchik 《Genetics》1994,137(3):855-865
Numerous new mutations at the brown (b) locus in mouse chromosome 4 have been recovered over the years in germ-cell mutagenesis experiments performed at the Oak Ridge National Laboratory. A large series of radiation- and chemical-induced b mutations known to be chromosomal deletions, and also known to be prenatally lethal when homozygous, were analyzed by pairwise complementation crosses as well as by pseudodominance tests involving flanking loci defined by externally visible phenotypes. These crosses were designed to determine the extent of each deletion on the genetic and phenotype map of the chromosomal region surrounding the b locus; the crosses also provided basic data that assigned deletions to complementation groups and defined four new loci associated with aberrancies in normal development. Specifically, the pseudodominance tests identified deletions that include the proximally mapping whirler (wi) and the distally mapping depilated (dep) genes, thereby bracketing these loci defined by visible developmental abnormalities with landmarks (deletion breakpoints) that are easily identified on the physical map. Furthermore, the complementation crosses, which were supplemented with additional crosses that allowed determination of the gross time of lethality of selected deletions, defined four new loci required for normal development. Homozygous deletion of one of these loci (b-associated fitness, baf) results in a runting syndrome evident during postnatal development; deletion of one locus [l(4)2Rn] causes death in the late gestation/neonatal period; and deletion of either of two loci [l(4)1Rn or l(4)3Rn] results in embryonic death, most likely in pre-, peri- or postimplantation stages. The placement of these new functionally defined loci on the evolving molecular map of the b region should be useful for continuing the analysis of the roles played in development by genes in this segment of chromosome 4.  相似文献   

17.
Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster . Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogaster by means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.  相似文献   

18.
Cytogenetic region 31 of the second chromosome of Drosophila melanogaster was screened for recessive lethal mutations. One hundred and thirty nine new recessive lethal alleles were isolated that fail to complement Df(2L)J2 (31A-32A). These new alleles, combined with preexisting mutations in the region, define 52 complementation groups, 35 of which have not previously been described. Among the new mutations were alleles of the cdc2 and mfs(2)31 genes. Six new deficiencies were also isolated and characterized identifying 16 deficiency subintervals within region 31. The new deficiencies were used to further localize three loci believed to encode non-histone chromosomal proteins. Suvar(2)1/Su(var)214, a dominant suppressor of position-effect variegation (PEV), maps to 31A-B, while the recessive suppressors of PEV mfs(2)31 and wdl were localized to regions 31E and 31F-32A, respectively. In addition, the cytological position of several mutations that interact with heterochromatin were more precisely defined.  相似文献   

19.
We have used a reverse genetics approach to isolate genes encoding two subunits of Drosophila melanogaster RNA polymerase II. RpII18 encodes the 18-kDa subunit and maps cytogenetically to polytene band region 83A. RpII140 encodes the 140-kDa subunit and maps to polytene band region 88A10:B1,2. Focusing on RpII140, we used in situ hybridization to map this gene to a small subinterval defined by the endpoints of a series of deficiencies impinging on the 88A/B region and showed that it does not represent a previously known genetic locus. Two recently defined complementation groups, A5 and Z6, reside in the same subinterval and thus were candidates for the RpII140 locus. Phenotypes of A5 mutants suggested that they affect RNA polymerase II, in that the lethal phase and the interaction with developmental loci such as Ubx resemble those of mutants in the gene for the largest subunit, RpII215. Indeed, we have achieved complete genetic rescue of representative recessive lethal mutations of A5 with a P-element construct containing a 9.1-kb genomic DNA fragment carrying RpII140. Interestingly, the initial construct also rescued lethal alleles in the neighboring complementation group, Z6, revealing that the 9.1-kb insert carries two genes. Deleting coding region sequences of RpII140, however, yielded a transformation vector that failed to rescue A5 alleles but continued to rescue Z6 alleles. These results strongly support the conclusion that the A5 complementation group is equivalent to the genomic RpII140 locus.  相似文献   

20.
P. F. Lasko  M. L. Pardue 《Genetics》1988,120(2):495-502
The region of the second chromosome of Drosophila melanogaster defined by Df(2R)vgB was screened for recessive lethal and visible mutations. Fifty-eight new recessive alleles fall into 17 complementation groups. Many new vg alleles were also isolated in a screen for new vg deficiencies. The breakpoints of the new vg deficiencies were nonrandomly distributed. The distal breakpoints of twelve of 20 deficiencies overlapping Df(2R)vgB are genetically identical to that of Df(2R)vgD, coinciding with the position of a complex, pleiotropic locus, l(2)49Ea-Psc-Su(z)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号