首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
5 alpha-Androstane-3 alpha,17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) were measured in human peripheral plasma by radioimmunoassay using celite microcolumn purification. The antisera used for the assay were obtained by immunization of rabbits with 3 alpha,17 beta-dihydroxy-5 alpha-androstane-6-(O-carboxymethyl) oxime: BSA for 3 alpha-diol and 3 beta,17 beta-dihydroxy-5 alpha-androstane-15 alpha-carboxymethyl: BSA for 3 beta-diol. The concentrations (pg/ml +/- SD) of the two diols in normal male and female plasma are respectively: 216 +/- 51 and 49 +/- 32 for 3 alpha-diol, 239 +/- 76 and 82 +/- 45 for 3 beta-diol. Comparison of these results with published ones shows that 3 beta diol concentrations were significantly lower. The high specificity of the assay is due to chromatography on celite microcolumns, allowing elimination of 5-androstene-3 beta,17 beta-diol from the plasma sample.  相似文献   

2.
Androsterone (3alpha-hydroxy-5alpha-androstan-17-one), 5alpha-androstane-3alpha, 17beta-diol and 5alpha-androstane-3beta, 17beta-diol were conjugated at C-16 through sulfur to bovine and human serum albumin. Rabbits injected with these conjugates produced antibodies suitable for radioimmunoassays of these hormone metabolites. Samples were purified on Sephadex LH-20 columns. Levels of these steroids were measured in a rat blood serum pool and in ovarian tissue extract pools.  相似文献   

3.
Conversion of labelled 5 alpha-androstane-17 beta-ol-3-one (DHT) by isolated testicular cells from rats of different ages was examined under saturating substrate conditions in vitro (5--10 micrograms DHT/ml in a 24 h incubation). Two detectable metabolites of DHT were produced by testicular cells in vitro. 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol). Production of these diols during a 24 h period was linear, and the amounts formed were directly related to the cell number. The amount of 3 alpha- and 3 beta-diols formed by testicular cells of rats of different ages increased from Day 10 to Day 25, then declined. Testicular cells from rats 10 to 20 days of age converted DHT mainly to 3 alpha-diol, but thereafter 3 beta-diol was the predominant testicular metabolite of DHT.  相似文献   

4.
The metabolism of 5 alpha-dihydrotestosterone by adult sheep blood was investigated. Erythrocytes contain 3 alpha- and 3 beta-hydroxysteroid dehydrogenase activities. The mean rate of reduction of 5 alpha-dihydrotestosterone by erythrocytes established in 15-min incubations was 0.66 +/- 0.36 (s.d.) mumol ml-1 erythrocytes h-1 and at equilibrium after a 60-min incubation, 90.6 +/- 5.1% of the substrate was reduced. The reduction of 5 alpha-dihydrotestosterone was shown to be dependent upon extracellular glucose and the intracellular cofactor NADPH. The proportion of the two reduction products was determined at equilibrium after separation by paper partition, chromatography and favoured 5 alpha-androstane-3 alpha, 17 beta-diol (96.0%) to 5 alpha-androstane-3 beta, 17 beta-diol (4.0%). The identities and proportions of the two products were confirmed by recrystallization procedures. The fact that erythrocytes can significantly metabolize the androgen 5 alpha-dihydrotestosterone is evidence for the recognition of blood as a major component of steroid endocrine homeostasis in sheep.  相似文献   

5.
Rat ventral prostate and liver were investigated for the binding in vitro to particulate fractions and for the metabolism of 5 alpha-androstane-3 beta, 17 beta-diol. Comparative investigations were carried out on the metabolism of 5 alpha-androstane-3 alpha, 17 beta-diol. Preparations of the liver were investigated in order to establish the organ specificity of the method. In the prostate, the bulk of the metabolites of 5 alpha-androstane-3 beta, 17 beta-diol was present as steroids of high polarity. Of the less polar metabolites, 17 beta-hydroxy-5 alpha-androstan-3-one, 3 beta-hydroxy-5 alpha-androstan, 17-one and 5 alpha-androstane-3 alpha, 17 beta-diol were detectable. The binding of a 5 alpha-androstane-3 beta, 17 beta-diol to mitochondria and microsomes was unspecific. In the liver, among the less polar metabolites, 3 beta-hydroxy-5 alpha-androstan-17-one was the main metabolite, and the binding was unspecific. The main metabolite in the prostate homogenate of 5 alpha-androstane-3 alpha, 17 beta-diol was 17 beta-hydroxy-5 alpha-androstan-3-one. The portion of highly polar steroids was very low. The portion of unmetabolized hormone was distributed almost equally among the different cell preparations except the nuclei, in which 17 beta-hydroxy-5 alpha-androstan-3-one was higher and 5 alpha-androstane-3 alpha, 17 beta-diol was lower than in the remaining cell fractions.  相似文献   

6.
In the male rat pituitary, 5alpha-androstane-3beta, 17beta-diol (3beta-diol) is extensively metabolized into polar steroids. They were identified as 5alpha-androstane-3beta, 6alpha-17beta-triol (6alpha-triol) and 5alpha-androstane-3beta, 7alpha, 17beta-triol (7alpha-triol). 6-alpha-Triol represents 53% and 7alpha-Triol 28% of the total 3beta-diol metabolites. The remaining percentage is related to 6beta and 7beta isomers. The biological role of triols is still unknown.  相似文献   

7.
The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes appears to be catalyzed by a single, high-affinity cytochrome P450 enzyme. In the present study we have examined the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from cynomolgus monkeys and from normal subjects and patients with benign prostatic hyperplasia. Our results suggest that although rat, monkey, and human prostate microsomes catalyze the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, these pathways of oxidation in monkeys and humans are not catalyzed by a single cytochrome P450 enzyme. The ratio of the three metabolites was not uniform among prostate microsomal samples from individual humans or monkeys. The 6 alpha-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol varied independently of both the 7 alpha- and 7 beta-hydroxylation, which varied in unison. The 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey prostate microsomes appeared to be differentially affected by in vivo treatment of monkeys with beta-naphthoflavone or dexamethasone. Treatment of a monkey with dexamethasone appeared to cause a 2.5-fold increase in both the 7 alpha- and the 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol without increasing the 6 alpha-hydroxylation. The 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human and monkey prostate microsomes, but not the 6 alpha-hydroxylation, was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase. Similarly, the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by human prostate microsomes, but not the 6 alpha-hydroxylation, was markedly inhibited (greater than 85%) by equimolar concentrations of the imidazole-containing antimycotic drugs ketoconazole, clotrimazole, and miconazole. These results suggest that the 7 alpha- and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by monkey and human prostate microsomes is catalyzed by a cytochrome P450 enzyme, whereas the 6 alpha-hydroxylation is catalyzed by a different enzyme which may or may not be a cytochrome P450 monooxygenase. The hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by prostate microsomes from normal human subjects was quantitatively and qualitatively similar to its hydroxylation by prostate microsomes from patients with benign prostatic hyperplasia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Significant metabolism of 5 alpha-androstane-3 beta,17 beta-diol to 17 beta-hydroxy-5 alpha-androstan-3-one was recorded in several tissues and organs from rats and humans. This bioconversion was further investigated in rat testis homogenates. 5 alpha-Androstane-3 beta,17 beta-diol was readily metabolized to 17 beta-hydroxy-5 alpha-androstan-3-one with NAD and/or NADP added as cofactors. When a NADPH generating system was included in the incubation, 5 alpha-androstane-3 beta,17 beta-diol was metabolized to 5 alpha-androstan-3 alpha,17 beta-diol. Only small amounts of 17 beta-hydroxy-5 alpha-androstan-3-one accumulated under the latter condition.  相似文献   

9.
S M Ho  P Ofner 《Steroids》1986,47(1):21-34
The goal of the present research was characterization of the interaction of 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) with prostatic estradiol-17 beta(E2) binding sites to address the role of this 5 alpha-dihydrotestosterone(DHT)a metabolite in prostatic regulation. Using dextran-charcoal assay we demonstrated specific 3 beta-diol and E2 binding sites in rat ventral prostate cytosol (RVPC) and dog prostate cytosol (DPC). In both cytosols, E2 binding is of high affinity (Ka congruent to 10(9) M-1; RVPC:68 fmol/mg protein), DPC:170 fmol/mg protein), and 3 beta-diol binding is of moderate affinity (Ka congruent to 10(8) M-1; RVPC:62 fmol/mg protein, DPC:165 fmol/mg protein). Unlabeled 3 beta-diol competes effectively for cytosolic 3H-E2 binding sites, whereas unlabeled DHT, 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) and testosterone (T) are poor competitors for 3H-E2 binding sites. Using DNA-cellulose column chromatography, we separated prostatic androgen and estrogen binding activities. The E2 binding activity which adhered to DNA-cellulose was displaced by 100-fold excess 3 beta-diol but not by DHT. Thus data from two assay procedures show competition of 3 beta-diol for 3H-E2 binding sites in rat and dog prostate.  相似文献   

10.
Using unlabeled androsterone as starting material, 5 alpha-[16,16-2H2]androstan-3 alpha-ol-17-one was synthesized by exchange using deuterated potassium methoxide. This labeled androsterone product was reduced by sodium borodeuteride, which gave predominantly trideuterated 5 alpha-androstane-3 alpha, 17 beta-diol. The labeled androstanediol was conjugated with glucuronide by using the Koenig-Knorr reaction with methyl-1-bromo-1-deoxy-2,3,4-tri-O-acetyl-alpha-D-glucopyranosuronate . The dominant product was identified by thermospray high-performance liquid chromatography/mass spectrometry (MS) and electrospray MS as 5 alpha-[16,16,17-2H3]androstane-3 alpha, 17 beta-diol, 17 beta-glucuronide.  相似文献   

11.
This study has characterized two new enzymatic hydroxylase activities specific for 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) in the rat ventral prostate: 5 alpha-androstane-3 beta, 17 beta-diol 6 alpha-hydroxylase (6 alpha-hydroxylase) and 5 alpha-androstane-3 beta, 17 beta-diol 7 alpha-hydroxylase (7 alpha-hydroxylase). Both of these irreversible hydroxylase activities require NADPH and are localized in the microsomal fraction of the prostate. The apparent Km for 3 beta-diol is 2.5 microM for both the 6 alpha- and 7 alpha-hydroxylase activities. The apparent Km for NADPH is 7.6 microM for the 6 alpha-hydroxylase and 7.0 microM for the 7 alpha-hydroxylase. The pH optimum for both activities is 7.4. Several steroid inhibitors of these hydroxylase activities in vitro were identified including cholesterol, progesterone, and estradiol. Estradiol was found in vitro to be a noncompetitive inhibitor (Ki = 5 microM). Injection of estradiol into intact male rats, simultaneously receiving exogenous testosterone, also produced a significant lowering of the 6 alpha-plus 7 alpha-hydroxylase activities. Both the 6 alpha- and 7 alpha-hydroxylase were found to be androgen sensitive. Following castration there is a rapid decrease in both activities.  相似文献   

12.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), unconjugated androstene-dione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI), 17 alpha-hydroxyprogesterone (17OHP), luteinising hormone (LH) and follicle stimulating hormone (FSH) were measured by specific radioimmunoassay in 28 hirsute women with polycystic ovarian disease (PCO) and in normal women (n = 73). Mean levels of steroids measured were significantly elevated, and SHBG significantly depressed, in the women with PCO with values (mean +/- SE) for 5-ADIOL-S (516 +/- 51 vs 267 +/- 10 nmol/l), 3 alpha-DIOL-S (130 +/- 9 vs 52 +/- 2 nmol/l), DHEA-S (7.3 +/- 0.5 vs 4.4 +/- 0.2 mumol/l), AD (11.3 +/- 1.1 vs 3.4 +/- 0.2 nmol/l), T (3.3 +/- 0.2 vs 1.5 +/- 0.1 nmol/l) and 17OHP (5.1 +/- 0.8 vs 2.8 +/- 0.2 nmol/l). SHBG levels were 31 +/- 2.9 vs 65 +/- 2.5 nmol/l, and the free androgen index [100 x T (nmol/l) divided by (SHBG nmol/l)] was 12.5 +/- 1.4 vs 2.4 +/- 0.1. The mean LH to FSH ratio was also elevated at 2.8 +/- 0.3. These studies suggest that the measurement of 5-ADIOL-S and DHEA-S may indicate adrenal gland involvement in PCO while 3 alpha-DIOL-S appears to be a reflection of peripheral androgen metabolism. A comprehensive biochemical profile of PCO should thus include the analysis of these sulphoconjugates as well as unconjugated steroids.  相似文献   

13.
The purpose of the present study was to test the hypothesis that rat prostate microsomes contain a single cytochrome P450 enzyme responsible for the conversion of 5 alpha-androstane-3 beta,17 beta-diol to a series of trihydroxylated products. The three major metabolites formed by in vitro incubation of 5 alpha-[3H]androstane-3 beta,17 beta-diol with rat prostate microsomes were apparently 5 alpha-androstane-3 beta,6 alpha,17 beta-triol, 5 alpha-androstane-3 beta,7 alpha,17 beta-triol, and 5 alpha-androstane-3 beta,7 beta,17 beta-triol, which were resolved and quantified by reverse-phase HPLC with a flow through radioactivity detector. The ratio of the three metabolites remained constant as a function of incubation time, microsomal protein concentration, ionic strength, and substrate concentration. The ratio of the three metabolites was dependent on pH, apparently because the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol shifted from the 6 alpha- to the 7 alpha-position with increasing pH (6.8-8.0). The V(max) values were 380, 160, and 60 pmol/mg microsomal protein/min for the rate of 6 alpha-, 7 alpha-, and 7 beta-hydroxylation, respectively. Similar Km values (0.5-0.7 microM) were measured for enzymatic formation of all three metabolites, which suggests that formation of all three metabolites was catalyzed by a single, high-affinity enzyme. Testosterone, 5 alpha-dihydrotestosterone, and 5 alpha-androstane-3 alpha,17 beta-diol did not appreciably inhibit the hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol, suggesting that this enzyme exhibits a high degree of substrate specificity. Formation of all three metabolites was inhibited by antibody against rat liver NADPH-cytochrome P450 reductase (85%) and by a 9:1 mixture of carbon monoxide and oxygen (60%). Several chemical inhibitors of cytochrome P450 enzymes, especially the antimycotic drug clotrimazole, also inhibited the formation of all three metabolites. Polyclonal antibodies that recognize liver cytochrome P450 1A, 2A, 2B, 2C, and 3A enzymes did not inhibit 5 alpha-androstane-3 beta,17 beta-diol hydroxylase activity. Overall, these results are consistent with the hypothesis that the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol by rat prostate microsomes is catalyzed by a single, high-affinity P450 enzyme. This cytochrome P450 enzyme appears to be structurally distinct from those in the 1A, 2A, 2B, 2C, and 3A gene families.  相似文献   

14.
5 alpha-Dihydrotestosterone, the principal androgen mediating prostate growth and function in the rat, is formed from testosterone by steroid 5 alpha-reductase. The inactivation of 5 alpha-dihydrotestosterone involves reversible reduction to 5 alpha-androstane-3 beta,17 beta-diol by 3 beta-hydroxysteroid oxidoreductase followed by 6 alpha-, 7 alpha-, or 7 beta-hydroxylation. 5 alpha-Androstane-3 beta,17 beta-diol hydroxylation represents the ultimate inactivation step of dihydrotestosterone in rat prostate and is apparently catalyzed by a single, high-affinity (Km approximately 0.5 microM) microsomal cytochrome P450 enzyme. The present studies were designed to determine if 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes is inhibited by agents that are known inhibitors of androgen-metabolizing enzymes. Inhibitors of steroid 5 alpha-reductase (4-azasteroid analogs; 10 microM) or inhibitors of 3 beta-hydroxysteroid oxidoreductase (trilostane, azastene, and cyanoketone; 10 microM) had no appreciable effect on the 6 alpha-, 7 alpha-, or 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (10 microM) by rat prostate microsomes. Imidazole-type antimycotic drugs (ketoconazole, clotrimazole, and miconazole; 0.1-10 microM) all markedly inhibited 5 alpha-androstane-3 beta,17 beta-diol hydroxylation in a concentration-dependent manner, whereas triazole-type antimycotic drugs (fluconazole and itraconazole; 0.1-10 microM) had no inhibitory effect. The rank order of inhibitory potency of the imidazole-type antimycotic drugs was miconazole greater than clotrimazole greater than ketoconazole. In the case of clotrimazole, the inhibition was shown to be competitive in nature, with a Ki of 0.03 microM. The imidazole-type antimycotic drugs inhibited all three pathways of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation to the same extent, which provides further evidence that, in rat prostate microsomes, a single cytochrome P450 enzyme catalyzes the 6 alpha-, 7 alpha-, and 7 beta-hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol. These studies demonstrate that certain imidazole-type compounds are potent, competitive inhibitors of 5 alpha-androstane-3 beta,17 beta-diol hydroxylation by rat prostate microsomes, which is consistent with the effect of these antimycotic drugs on cytochrome P450 enzymes involved in the metabolism of other androgens and steroids.  相似文献   

15.
In this study, we investigated the binding characteristics of [3H]Delta(5)-androstene-3beta,17beta-diol to rabbit vaginal cytosolic and nuclear extracts and in freshly excised intact tissue strips. [3H]delta(5)-Androstene-3beta,17beta-diol bound to a protein(s) in the vaginal nuclear extract with high affinity (K(d)=3-5 nM) and limited capacity (50-100 fmol/mg protein). No specific binding was detected in the cytoplasmic extracts. Competitive binding studies showed that binding of [3H]delta(5)-androstene-3beta,17beta-diol was effectively displaced with unlabeled delta(5)-androstene-3beta,17beta-diol but not with dehydroepiandrosterone, testosterone, dihydrotestosterone, triamcinolone acetonide, or progesterone. However, estradiol at high concentrations partially displaced bound [3H]delta(5)-androstene-3beta,17beta-diol. Incubation of freshly excised vaginal tissue strips with [3H]delta(5)-androstene-3beta,17beta-diol in the absence or presence of excess unlabeled delta(5)-androstene-3beta,17beta-diol for 1h at 37 degrees C resulted in specific binding to a soluble macromolecule in the nuclear KCl extracts. In addition, quantitative measurement of estrogen receptor, androgen receptor and delta(5)-androstene-3beta,17beta-diol binding protein was performed by equilibrium ligand binding assays using extracts of distal vaginal tissue from intact animals or ovariectomized animals treated for 2 weeks with vehicle, estradiol, testosterone, or estradiol plus testosterone. These changes in steroid hormone levels resulted in opposing trends between the estrogen receptor and delta(5)-androstene-3beta,17beta-diol binding protein, suggesting that delta(5)-androstene-3beta,17beta-diol binding protein is regulated differently by the hormonal milieu than the estrogen receptor. These data suggest that rabbit vaginal tissue expresses a novel binding protein which specifically binds delta(5)-androstene-3beta,17beta-diol and is distinct from the androgen and estrogen receptors.  相似文献   

16.
As enzymatic hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) may be a factor in controlling the 5 alpha-dihydrotestosterone (DHT) content in the prostate, we were interested in activity and distribution of these enzymes in epithelium and stroma of human benign prostatic hyperplasia (BPH). The enzyme activities were measured after mechanical separation of BPH tissue from 15 patients of various ages into stroma and epithelium, and optimization of the in vitro transformation of 3 beta-diol to hydroxylated products, which were analyzed by HPLC. The main results were: (1) 3 beta-diol was hydroxylated at C-7 alpha, C-7 beta, C-6 alpha, and C-6 beta. (2) The mean Michaelis constant Km (nM +/- SEM) for hydroxylation at C-7 alpha(beta) (168 +/- 21) was significantly lower than at C-6 alpha(beta) (601 +/- 43) without differences between stroma and epithelium. (3) Hydroxylation at alpha position dominated significantly over that at beta. (4) The mean maximal metabolic rate Vmax (pmol . mg protein-1 . h-1) of hydroxylation at C-6 alpha was about 7-fold lower in stroma (3.4 +/- 0.2) than in epithelium (23.8 +/- 4.1), concerning the other hydroxylations, Vmax was about 1.6-fold lower in stroma. (5) With increasing age of the patients there was a significant decrease of the 3 beta-diol hydroxylation in stroma and epithelium. It is discussed that the significantly lower activity of 3 beta-diol hydroxylation in stroma compared to epithelium and the decrease of activity with increasing age might potentiate the DHT accumulation in stroma of BPH.  相似文献   

17.
By means of high performance liquid chromatography and gas chromatography-mass spectrometry it has been found that 5 alpha-androstane-3 beta,17 beta-diol sulfate and 3 beta-hydroxy-5 alpha-androstan-17-one sulfate (epiandrosterone) are major secretory steroids of the mature boar testes. These same compounds were similarly identified in culture media when porcine Leydig cells were incubated with androstenedione as substrate. In addition, they were seen as the principal secretory products when [3H]androstenedione and [3H]testosterone were used as substrates; and their presence was greatly reduced by an inhibitor of 5 alpha-reductase (N,N-diethyl,4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide). Greater quantities of 5 alpha-androstanediol than epiandrosterone were noted in all instances. These findings provide further evidence of the versatile activity of the boar testes in steroidogenesis.  相似文献   

18.
Our studies demonstrate that direct stimulation of dihydrotestosterone metabolism by ethanol (2.2 - 65 mM) in rat Leydig cells primarily involves an increase in 5 alpha-androstan-3 beta, 17 beta-diol. Although the enzyme catalyzing this conversion, 5 alpha-androstane-3 beta-hydroxysteroid dehydrogenase, is localized in the microsomal fraction of Leydig cells, ethanol does not increase 5 alpha-androstan-3 beta, 17 beta-diol formation in isolated microsomes, presumably because of the removal of soluble alcohol dehydrogenase activity, which we propose mediates this action. Because 5 alpha-androstan-3 beta, 17 beta-diol is generally considered a weak or inactive androgen, this effect may function to decrease dihydrotestosterone secretion by Leydig cells and/or to reduce the availability of this androgen in responsive tissues.  相似文献   

19.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), as well as 5 alpha-androstane-3 alpha,17 beta-diol glucuronide (3 alpha-DIOL-G) and unconjugated androstenedione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI) and 17 alpha-hydroxyprogester-one (17OHP) were measured by specific radioimmunoassays (RIA) in 14 women with late-onset 21-hydroxylase deficiency (LOCAH), and in normal women (n = 73). The diagnosis of LOCAH was made on the finding of a (17OHP) response level greater than 30 nmol/l following ACTH stimulation, and/or an elevation of urinary metabolites of 17OHP. Mean values for serum concentrations of all steroids measured and the free androgen index (100 X T nmol/l divided by SHBG nmol/l) were significantly elevated, and SHBG levels depressed in patients with LOCAH. These studies show that in LOCAH, in addition to the unconjugated steroids AD and T, the sulphoconjugated steroids DHEA-S, 5-ADIOL-S and 3 alpha-DIOL-S are increased, as is the glucuronide conjugate 3 alpha-DIOL-G and the index of bioavailable testosterone (FAI), and that mean SHBG levels are depressed. These data suggest that as well as AD, 5-ADIOL-S and DHEA-S may act as pro-hormones for more potent steroids (T and 5 alpha-dihydrotestosterone) in peripheral tissues, while 3 alpha-DIOL-S and 3 alpha-DIOL-G may both reflect peripheral androgen metabolism in patients with LOCAH.  相似文献   

20.
The present results demonstrate for the first time in rat liver, that low ethanol concentrations (2.2 and 22 mM) directly stimulate dihydrotestosterone conversion to 5 alpha-androstan-3 alpha, 17 beta-diol and 5 alpha-androstan-3 beta, 17 beta-diol. Because this effect was blocked by 4-methylpyrazole, an alcohol dehydrogenase inhibitor, or by the addition of a saturating NADH concentration, this action probably is mediated by hepatic alcohol dehydrogenase activity through elevation of the NADH/NAD+ ratio. It remains to be determined whether this effect of ethanol actually reduces circulating and/or target tissue dihydrotestosterone levels; nevertheless, it is tempting to speculate that this action, in part, is responsible for the reported adverse effects of alcohol on male reproductive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号