首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Binding of a pre-mRNA substrate triggers spliceosome activation, whereas the release of the mRNA product triggers spliceosome disassembly. The mechanisms that underlie the regulation of these rearrangements remain unclear. We find evidence that the GTPase Snu114p mediates the regulation of spliceosome activation and disassembly. Specifically, both unwinding of U4/U6, required for spliceosome activation, and disassembly of the postsplicing U2/U6.U5.intron complex are repressed by Snu114p bound to GDP and derepressed by Snu114p bound to GTP or nonhydrolyzable GTP analogs. Further, similar to U4/U6 unwinding, spliceosome disassembly requires the DExD/H box ATPase Brr2p. Together, our data define a common mechanism for regulating and executing spliceosome activation and disassembly. Although sequence similarity with EF-G suggests Snu114p functions as a molecular motor, our findings indicate that Snu114p functions as a classic regulatory G protein. We propose that Snu114p serves as a signal-dependent switch that transduces signals to Brr2p to control spliceosome dynamics.  相似文献   

3.
Luco RF  Allo M  Schor IE  Kornblihtt AR  Misteli T 《Cell》2011,144(1):16-26
Alternative splicing plays critical roles in differentiation, development, and disease and is a major source for protein diversity in higher eukaryotes. Analysis of alternative splicing regulation has traditionally focused on RNA sequence elements and their associated splicing factors, but recent provocative studies point to a key function of chromatin structure and histone modifications in alternative splicing regulation. These insights suggest that epigenetic regulation determines not only what parts of the genome are expressed but also how they are spliced.  相似文献   

4.
RNA interference (RNAi) is becoming a popular method for analyzing gene function in a variety of biological processes. We have used RNAi in cultured Drosophila cells to identify trans-acting factors that regulate the alternative splicing of endogenously transcribed pre-mRNAs. We have generated a dsRNA library comprising 70% of the Drosophila genes encoding RNA binding proteins and assessed the function of each protein in the regulation of alternative splicing. This approach not only identifies trans-acting factors regulating specific alternative splicing events, but also can provide insight into the alternative splicing regulatory networks of Drosophila. Here, we describe this RNAi approach to identify alternative splicing regulatory proteins in detail.  相似文献   

5.
U-box-containing Prp19p is an integral component of the Prp19p-associated complex (the nineteen complex, or NTC) that is essential for activation of the spliceosome. Prp19p makes numerous protein-protein contacts with other NTC components and is required for NTC stability. Here we show that Prp19p forms a tetramer in vitro and in vivo and we map the domain required for its oligomerization to a central tetrameric coiled-coil. Biochemical and in vivo analyses are consistent with Prp19p tetramerization providing an interaction surface for a single copy of its binding partner, Cef1p. Electron microscopy showed that the isolated Prp19p tetramer is an elongated particle consisting of four globular WD40 domains held together by a central stalk consisting of four N-terminal U-boxes and four coiled-coils. These structural and functional data provide a basis for understanding the role of Prp19p as a key architectural component of the NTC.  相似文献   

6.
Mechanisms of fidelity in pre-mRNA splicing   总被引:20,自引:0,他引:20  
The pre-mRNA splicing machinery consists of five small nuclear RNAs (U1, U2, U4, U5 and U6) and more than fifty proteins. Over the past year, important advances have been made in understanding how these factors function to achieve fidelity in splicing. Of particular note were the discoveries that the splicing factor U2AF(35) recognizes the AG dinucleotide at the 3' splice site early in spliceosome assembly, that a DEAD-box ATPase, Prp28, triggers specific rearrangements of the spliceosome, and that the splicing factor hSlu7 functions in the fidelity of AG choice during catalytic step II of splicing.  相似文献   

7.
8.
In eukaryotes, most protein-coding genes contain introns which are removed by precursor messenger RNA (pre-mRNA) splicing. Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct proteins. Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression. Mis-regulation of splicing causes a wide range of human diseases. This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing. It also discusses emerging directions in the field of alternative splicing. Supported by the Program of “one Hundred Talented people” of the Chinese Academy of Sciences.  相似文献   

9.
A T→G mutation at nucleotide 705 of human β-globin intron 2 creates an aberrant 5′ splice site and activates a cryptic 3′ splice site upstream. In consequence, the pre-mRNA is spliced via aberrant splice sites, despite the presence of the still functional correct sites. Surprisingly, when IVS2-705 HeLa or K562 cells were cultured at temperatures below 30°C, aberrant splicing was inhibited and correct splicing was restored. Similar temperature effects were seen for another β-globin pre-mRNA, IVS2-745, and in a construct in which a β-globin intron was inserted into a coding sequence of EGFP. Temperature-induced alternative splicing was affected by the nature of the internal aberrant splice sites flanking the correct sites and by exonic sequences. The results indicate that in the context of thalassemic splicing mutations and possibly in other alternatively spliced pre-mRNAs, temperature is one of the parameters that affect splice site selection.  相似文献   

10.
Pairing between U2 snRNA and the branch site of spliceosomal introns is essential for spliceosome assembly and is thought to be required for the first catalytic step of splicing. We have identified an RNA comprising the 5' end of U2 snRNA and the 3' exon of the ACT1-CUP1 reporter gene, resulting from a trans-splicing reaction in which a 5' splice site-like sequence in the universally conserved branch site-binding region of U2 is used in trans as a 5' splice site for both steps of splicing in vivo. Formation of this product occurs in functional spliceosomes assembled on reporter genes whose 5' splice sites are predicted to bind poorly at the spliceosome catalytic center. Multiple spatially disparate splice sites in U2 can be used, calling into question both the fate of its pairing to the branch site and the details of its role in splicing catalysis.  相似文献   

11.
U2 small nuclear ribonucleoprotein auxiliary factor (U2AF) is an essential component of the splicing machinery that is composed of two protein subunits, the 35 kDa U2AF35 (U2AF1) and the 65 kDa U2AF65 (U2AF2). U2AF interacts with various splicing factors within this machinery. Here we expand the list of mammalian splicing factors that are known to interact with U2AF65 as well as the list of nuclear proteins not known to participate in splicing that interact with U2AF65. Using a yeast two-hybrid system, we found fourteen U2AF65-interacting proteins. The validity of the screen was confirmed by identification of five known U2AF65-interacting proteins, including its heterodimeric partner, U2AF35. In addition to binding these known partners, we found previously unrecognized U2AF65 interactions with four splicing-related proteins (DDX39, SFRS3, SFRS18, SNRPA), two zinc finger proteins (ZFP809 and ZC3H11A), a U2AF65 homolog (RBM39), and two other regulatory proteins (DAXX and SERBP1). We report which regions of U2AF65 each of these proteins interacts with and we discuss their potential roles in regulation of pre-mRNA splicing, 3′-end mRNA processing, and U2AF65 sub-nuclear localization. These findings suggest expanded roles for U2AF65 in both splicing and non-splicing functions.  相似文献   

12.
Schwer B  Meszaros T 《The EMBO journal》2000,19(23):6582-6591
The DExH-box NTPase/helicase Prp22p plays two important roles in pre-mRNA splicing. It promotes the second transesterification reaction and then catalyzes the ATP-dependent release of mature mRNA from the spliceosome. Evidence that helicase activity is important emerged from the analysis of Prp22p motif III (SAT) mutations that uncouple the NTPase and helicase activities. We find that S635A and T637A hydrolyse ATP, but are defective in unwinding duplex RNA and releasing mRNA from the spliceosome. The S635A mutation is lethal in vivo at 相似文献   

13.
14.
15.
A cyclophilin functions in pre-mRNA splicing   总被引:8,自引:0,他引:8  
We report that the cyclophilin USA-CyP is part of distinct complexes with two spliceosomal proteins and is involved in both steps of pre-mRNA splicing. The splicing factors hPrp18 and hPrp4 have a short region of homology that defines a high affinity binding site for USA-CyP in each protein. USA-CyP forms separate, stable complexes with hPrp18 and hPrp4 in which the active site of the cyclophilin is exposed. The cyclophilin inhibitor cyclosporin A slows pre-mRNA splicing in vitro, and we show that its inhibition of the second step of splicing is caused by blocking the action of USA-CyP within its complex with hPrp18. Cyclosporin A also slows splicing in vivo, and we show that this slowing results specifically from inhibition of USA-CyP. Our results lead to a model in which USA-CyP is carried into the spliceosome in complexes with hPrp4 and hPrp18, and USA-CyP acts during splicing within these complexes. These results provide an example of the function of a cyclophilin in a complex process and provide insight into the mechanisms of action of cyclophilins.  相似文献   

16.
Through exhaustive two-hybrid screens using a budding yeast genomic library, and starting with the splicing factor and DEAH-box RNA helicase Prp22p as bait, we identified yeast Prp45p and Prp46p. We show that as well as interacting in two-hybrid screens, Prp45p and Prp46p interact with each other in vitro. We demonstrate that Prp45p and Prp46p are spliceosome associated throughout the splicing process and both are essential for pre-mRNA splicing. Under nonsplicing conditions they also associate in coprecipitation assays with low levels of the U2, U5, and U6 snRNAs that may indicate their presence in endogenous activated spliceosomes or in a postsplicing snRNP complex.  相似文献   

17.
SR proteins regulate alternative splicing by binding to exonic sequences where, via an arginine/serine-rich splicing activation domain, they enhance the binding of the spliceosome to the adjacent splice sites. Here, a system is described in which a nontoxic derivative of the small molecule rapamycin is used to control pre-mRNA splicing in vitro. This involves the rapamycin-dependent recruitment of a splicing activation domain located on one protein to a second protein bound to the pre-mRNA. These results provide a new approach to explore for regulating gene expression in vivo with small molecules by controlling pre-mRNA splicing.  相似文献   

18.
Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5′ splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号