首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For better understanding of pathophysiological processes leading to increased retention of sodium as a consequence of hyperlipidemia, the properties of renal Na,K-ATPase, a key enzyme involved in maintaining sodium homeostasis in the organism, were studied. Enzyme kinetics of renal Na,K-ATPase were used for characterization of ATP- and Na(+)-binding sites after administration of fish oil (FO) (30 mg·day(-1)) or atorvastatin (0.5 mg·100 g(-1)·day(-1)) to healthy Wistar rats and rats with hereditary hypertriglyceridemia of both genders. Untreated healthy Wistar and also hypertriglyceridemic female rats revealed higher Na,K-ATPase activity as compared to respective untreated male groups. Hypertriglyceridemia itself was accompanied with higher Na,K-ATPase activity in both genders. Fish oil improved the enzyme affinity to ATP and Na(+), as indicated by lowered values of K(m) and K(Na) in Wistar female rats. In Wistar male rats FO deteriorated the enzyme in the vicinity of the Na(+)-binding site as revealed from the increased K(Na) value. In hypertriglyceridemic rats FO induced a significant effect only in females in the vicinity of the sodium binding sites resulting in improved affinity as documented by the lower value of K(Na). Atorvastatin aggravated the properties of Na,K-ATPase in both genders of Wistar rats. In hypertriglyceridemic rats protection of Na,K-ATPase was observed, but this effect was bound to females only. Both treatments protected renal Na,K-ATPase in a gender specific mode, resulting probably in improved extrusion of excessive intracellular sodium out of the cell affecting thus the retention of sodium in hHTG females only.  相似文献   

2.
The Na(+),K(+)-ATPase is postulated to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembrane Na(+)-efflux from cardiac cells in spontaneously hypertensive rats (SHR). In the investigated group of SHR the systolic blood pressure and the heart weight were increased by 48% and by 60%, respectively. Upon activating the cardiac Na(+),K(+)-ATPase with substrate, its activity was lower in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (Vmax) by 28% which was accompanied with lowered affinity of the ATP-binding site as indicated by the increased value of Michaelis-Menten constant (Km) by 354% in SHR. During activation with Na(+), we observed an inhibition of the enzyme in hearts from SHR at all tested Na(+) concentrations. The value of Vmax decreased by 37%, and the concentration of Na(+) that gives half maximal reaction velocity (KNa) increased by 98%. This impairment in the affinity of the Na(+)-binding site together with decreased affinity to ATP in the molecule of the Na(+),K(+)-ATPase are probably responsible for the deteriorated efflux of the excessive Na(+) from the intracellular space in hearts of SHR.  相似文献   

3.
In the present study we examined the effect of dietary supplementation with the pyridoindole antioxidant stobadine on functional properties of the cardiac Na(+),K(+)-ATPase in diabetic rats. Diabetes lasting sixteen weeks which was induced by a single i.v. dose of streptozotocin (55 mg x kg(-1)) was followed by decrease in the enzyme activity. Evaluation of kinetic parameters revealed a statistically significant decrease in the maximum velocity (Vmax) (32% for ATP-activation, 33% for Na(+)-activation), indicating a diabetes-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. The ATP-binding properties of the enzyme were not affected by diabetes as suggested by statistically insignificant changes in the value of Michaelis-Menten constant, K(M (ATP)). On the other hand, the affinity to sodium decreased as suggested by 54% increase in the K(M (Na+)) value. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na(+),K(+)-ATPase molecules are probably responsible for the deteriorated enzyme function in hearts of diabetic animals. Administration of stobadine to diabetic rats dramatically improved the function of cardiac Na(+),K(+)-ATPase with regard to Na(+)-handling, as documented by statistically significant elevation of Vmax by 66 and 47% decrease in K(M (Na+)). Our data suggest that stobadine may prevent the diabetes-induced deterioration of cardiac Na(+),K(+)-ATPase, thus enabling to preserve its normal function in regulation of intracellular homeostasis of Na(+) and K(+) ions.  相似文献   

4.
This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (γC(33)) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K(+), ATP and NH(4)(+). K(0.5) for Na(+) was unaffected. Exogenous pig FXYD2 increased the V(max) for stimulation of gill Na,K-ATPase activity by Na(+), K(+) and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na,K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity.  相似文献   

5.
The present study was focused on regulatory role of nitric oxide on functional properties of the cardiac Na, K-ATPase in three various animal models of hypertension: spontaneously hypertensive male rats (SHR) with increased activity of nitric oxide synthase (NOS) by 60 % (Sh1), SHR with decreased activity of NOS by 40 % (Sh2) and rats with hypertension induced by L-NAME (40 mg/kg/day) with depressed activity of NOS by 72 % (LN). Studying the utilization of energy substrate we observed higher Na, K-ATPase activity in the whole concentration range of ATP in Sh1 and decreased activity in Sh2 and LN. Evaluation of kinetic parameters revealed an increase of Vmax value by 37 % in Sh1 and decrease by 30 % in Sh2 and 17 % in LN. The KM value remained unchanged in Sh2 and LN, but was lower by 38 % in Sh1 indicating increased affinity of the ATP binding site, as compared to controls. During the activation with Na+ we observed increased Vmax by 64 % and increased KNa by 106 % in Sh1. In Sh2 we found decreased Vmax by 40 % and increased KNa by 38 %. In LN, the enzyme showed unchanged Vmax with increased KNa by 50 %. The above data indicate a positive role of increased activity of NOS in improved utilization of ATP as well as enhanced binding of Na+ by the cardiac Na, K-ATPase.  相似文献   

6.
Vrbjar N  Pechánová O 《Life sciences》2002,71(15):1751-1761
The (Na,K)-ATPase is hypothesized to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembraneous efflux of Na(+) from cardiac cells in spontaneously hypertensive rats (SHR) with increased synthesis of nitric oxide (NO). In the investigated group of SHR the systolic blood pressure was increased by 64% and the synthesis of NO was increased by 60% in the heart. When activating the cardiac (Na,K)-ATPase with substrate, its activity was higher in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed an increase of the V(max) (by 37%) probably due to increased affinity of the ATP-binding site as indicated by the lowered K(m) value (by 38%) in SHR. During activation with Na(+), we observed no change in the enzyme activity below 10 mmol/l of NaCl whereas in the presence of higher concentrations of NaCl the (Na,K)-ATPase was stimulated. The value of V(max) increased (by 64%), however the K(Na) increased (by 106%), indicating an adaptation of the Na(+)-binding site of the enzyme to increased [Na(+)](i). Thus the (Na,K)-ATPase in our SHR group is able to extrude the excessive Na(+) from myocardial cells more effectively also at higher [Na(+)](i), while the enzyme from controls is unable to increase its activity further. This improvement of the (Na,K)-ATPase function is supported also by increased affinity of its ATP-binding site probably due to enhanced NO-synthesis.  相似文献   

7.
Ward DG  Taylor M  Lilley KS  Cavieres JD 《Biochemistry》2006,45(10):3460-3471
ATP has high- and low-affinity effects on the sodium pump and other P-type ATPases. We have approached this question by using 2',3'-O-(trinitrophenyl)-8-azidoadenosine 5'-diphosphate (TNP-8N(3)-ADP) to photoinactivate and label Na,K-ATPase, both in its native state and after covalent FITC block of its high-affinity ATP site. With the native enzyme, the photoinactivation rate constant increases hyperbolically with a K(D(TNP-8N)3(-)(ADP)) of 0.11 microM; TNP-ATP and ATP protect the site with high affinities. The inactivation does not require Na(+), but K(+) inhibits with a K(K)' of 12 microM; Na(+) reverses this effect, with a K(Na) of 0.17 mM. This pattern suggests that Na(+) and K(+) are binding at sites in their "intracellular" conformation. It was known that FITC did not abolish the reverse phosphorylation by P(i), or the K(+)-phosphatase activity, and that TNP-8N(3)-ADP could subsequently photoinactivate the latter with >100-fold lower affinity; in that case, the cation sites acted as if facing outward [Ward, D. G., and Cavieres, J. D. (1998) J. Biol. Chem. 273, 14277-14284, 33759-33765]. Native and FITC-modified enzymes have now been photolabeled with TNP-8N(3)-[alpha-(32)P]ADP and alpha-chain soluble tryptic peptides separated by reverse-phase HPLC. With native Na,K-ATPase, three labeled peaks lead to the unique sequence alpha-(470)Ile-Val-Glu-Ile-Pro-Phe-Asn-Ser-Thr-Asn-X-Tyr-Gln-Leu-Ser-Ile-His-Lys(487), the dropped residue being alphaLys480. With the FITC enzyme, instead, two independent labeling and purification cycles return the sequence alpha-(721)Ala-Asp-Ile-Gly-Val-Ala-Met-Gly-Ile-Ala-Gly-Ser-Asp-Val-Ser-Lys(736). These results suggest that Na,K-ATPase also has a low-affinity nucleotide binding region, one that is under distinctive allosteric control by Na(+) and K(+). Moreover, the cation effects seem compatible with a slow, passive Na(+)/K(+) carrier behavior of the FITC-modified sodium pump.  相似文献   

8.
G Blanco  R J Melton  G Sánchez  R W Mercer 《Biochemistry》1999,38(41):13661-13669
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.  相似文献   

9.
It was previously shown that 4 hours lasting inhibition of nitric oxide synthesis by administration of an L-arginine analogue, the A(G)-nitro-L-arginine methyl ester (L-NAME) changed the affinity of the Na-binding site of Na,K-ATPase thus resulting in elevation of enzyme activity especially at higher concentrations of sodium. Using the same experimental model, we focused our attention in the present study to the question of binding of ATP to the enzyme molecule in the left ventricle (LV), ventricular septum (S) and the right ventricle (RV) of the dog heart. Activation of the enzyme by increasing concentrations of ATP revealed a significant increase of the Vmax only in septum (by 38 %). The K(M) increased significantly in septum (by 40 %) and in left ventricle (by 56 %) indicating an altered sensitivity of the ATP-binding site of Na,K-ATPase in the hearts of NO-deficient animals. The alterations of Na,K-ATPase in its ability to bind and hydrolyze ATP are localized to the tissue surrounding the cavity of the left ventricle.  相似文献   

10.
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.  相似文献   

11.
The Na,K-ATPase of red cells from high K+ and low K+ dogs was studied immunologically by using antibodies raised against dog kidney enzyme. Anti-alpha subunit IgGs, which also recognized alpha (+) from brain enzyme, identified the larger subunit of erythrocyte Na,K-ATPase as a homogeneous polypeptide with Mr = 96,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting. In addition, erythrocyte Na,K-ATPase, purified by immunoaffinity chromatography on a monoclonal antibody-coupled column, showed the identity of its polypeptide composition to that of the renal enzyme. Furthermore, it was shown that reticulocyte lysates from high K+ and low K+ dogs substantially degraded 125I-Bolton-Hunter reagent-labeled Na,K-ATPase. This degradation of the enzyme protein was significantly enhanced by the addition of ATP and Mg2+. These results indicate that dog reticulocytes possess some mechanism for protein breakdown involving an ATP-dependent proteolytic system, resulting in the dramatic breakdown of Na,K-ATPase activity during dog reticulocyte maturation into erythrocytes (Maede, Y., and Inaba, M. (1985) J. Biol. Chem. 260, 3337-3343).  相似文献   

12.
Gene knockout of the KCNJ11-encoded Kir6.2 ATP-sensitive K(+) (K(ATP)) channel implicates this stress-response element in the safeguard of cardiac homeostasis under imposed demand. K(ATP) channels are abundant in ventricular sarcolemma, where subunit expression appears to vary between the sexes. A limitation, however, in establishing the full significance of K(ATP) channels in the intact organism has been the inability to monitor in vivo the contribution of the channel to intracellular calcium handling and the superimposed effect of sex that ultimately defines heart function. Here, in vivo manganese-enhanced cardiac magnetic resonance imaging revealed, under dobutamine stress, a significantly greater accumulation of calcium in both male and female K(ATP) channel knockout (Kir6.2-KO) mice compared with sex- and age-matched wild-type (WT) counterparts, with greatest calcium load in Kir6.2-KO females. This translated, poststress, into a sustained contracture manifested by reduced end-diastolic volumes in K(ATP) channel-deficient mice. In response to ischemia-induced stunning, male and female Kir6.2-KO hearts demonstrated accelerated time to contracture and increased peak contracture compared with WT. The outcome on reperfusion, in both male and female Kir6.2-KO hearts, was a transient reduction in systolic performance, measured as rate-pressure product compared with WT, with protracted increase in left ventricular end-diastolic pressure, exaggerated in female knockout hearts, despite comparable leakage of creatine kinase across groups. Kir6.2-KO hearts were rescued from diastolic dysfunction by agents that target alternative pathways of calcium handling. Thus K(ATP) channel deficit confers a greater susceptibility to calcium overload in vivo, accentuated in female hearts, impairing contractile recovery under various conditions of high metabolic demand.  相似文献   

13.
The matching of energy supply and demand under hypoxic conditions is critical for sustaining myocardial function. Numerous reports indicate that basal energy requirements and ion handling may differ between the ventricles. We hypothesized that ventricular response to hypoxia shows interventricular differences caused by the heterogeneity in glucose metabolism and expression and activity of ion transporters. Thus we assessed glucose utilization rate, ATP, sodium and potassium concentrations, Na, K-ATPase activity, and tissue reduced:oxidized glutathione (GSH/GSSG) content in the right and left ventricles before and after the exposure of either the whole animals or isolated blood-perfused hearts to hypoxia. The hypoxia-induced boost in glucose utilization was more pronounced in the left ventricle compared with the right one. ATP levels in the right ventricle of hypoxic heart were lower than those in the left ventricle. Left ventricular sodium content was higher, and hydrolytic Na, K-ATPase activity was reduced compared with the right ventricle. Administration of the Na, K-ATPase blocker ouabain caused rapid increase in the right ventricular Na(+) and elimination of the interventricular Na(+) gradients. Exposure of the hearts to hypoxia made the interventricular heterogeneity in the Na(+) distribution even more pronounced. Furthermore, systemic hypoxia caused oxidative stress that was more pronounced in the right ventricle as revealed by GSH/GSSG ratios. On the basis of these findings, we suggest that the right ventricle is more prone to hypoxic damage, as it is less efficient in recruiting glucose as an alternative fuel and is particularly dependent on the efficient Na, K-ATPase function.  相似文献   

14.
In the absence of Na(+) and K(+) ions the Na,K-ATPase shows a pH-dependent ATP hydrolysis that can be inhibited by ouabain. At pH 7.2 this activity is 5% of the maximal under physiological conditions. It could be inferred that this activity is associated with H(+) transport in both directions across the membrane and facilitates an H-only mode of the sodium pump under such unphysiological conditions. By the analysis of experiments with reconstituted proteoliposomes an overall electroneutral transport mode has been proven. The stoichiometry was determined to be 2 H(+)/2 H(+)/1 ATP and is comparable to what is known from the closely related H,K-ATPase. By time-resolved ATP-concentration jump experiments it was found that at no time was the third, Na(+)-specific binding site of the pump occupied by protons. A modified Post-Albers pump cycle is proposed, with H(+) ions as congeners for Na(+) and K(+), by which all experiments performed can be explained.  相似文献   

15.
We evaluated the function of Na(+)/K(+) ATPase and sarcolemmal K(ATP) channels in diabetic rat hearts. Six weeks after streptozotocin (STZ) injection, unidirectional K(+) fluxes were assayed by using (87)rubidium ((87)Rb(+)) MRS. The hearts were loaded with Rb(+) by perfusion with Krebs-Henseleit buffer, in which 50% of K(+) was substituted with Rb(+). The rate constant of Rb(+) uptake via Na(+)/K(+) ATPase was reduced. K(ATP)-mediated Rb(+) efflux was activated metabolically with 2,4-dinitrophenol (DNP, 50 micromol.L(-1)) or pharmacologically with a K(ATP) channel opener, P-1075 (5 micromol.L(-1)). Cardiac energetics were monitored by using (31)P MRS and optical spectroscopy. DNP produced a smaller ATP decrease, yet similar Rb(+) efflux activation in STZ hearts. In K(+)-arrested hearts, P-1075 had no effect on high-energy phosphates and stimulated Rb(+) efflux by interaction with SUR2A subunit of K(ATP) channel; this stimulation was greater in STZ hearts. In normokalemic hearts, P-1075 caused cardiac arrest and ATP decline, and the stimulation of Rb(+) efflux was lower in normokalemic STZ hearts arrested by P-1075. Thus, the Rb(+)efflux stimulation in STZ hearts was altered depending on the mode of K(ATP) channel activation: pharmacologic stimulation (P-1075) was enhanced, whereas metabolic stimulation (DNP) was reduced. Both the basal concentration of phosphocreatine ([PCr]) and [PCr]/[ATP] were reduced; nevertheless, the STZ hearts were more or equally resistant to metabolic stress.  相似文献   

16.
The effects of organic quaternary amines, tetraethylammonium (TEA) chloride and benzyltriethylammonium (BTEA) chloride, on Na,K pump current were examined in rat cardiac myocytes superfused in extracellular Na(+)-free solutions and whole-cell voltage-clamped with patch electrodes containing a high Na(+)-salt solution. Extracellular application of these quaternary amines competitively inhibited extracellular K(+) (K(+)(o)) activation of Na,K pump current; however, the concentration for half maximal inhibition of Na,K pump current at 0 mV (K(0)(Q)) by BTEA, 4.0 +/- 0.3 mM, was much lower than the K(0)(Q) for TEA, 26.6 +/- 0.7 mM. Even so, the fraction of the membrane electric field dissipated during K(+)(o) activation of Na,K pump current (lambda(K)), 39 +/- 1%, was similar to lambda(K) determined in the presence of TEA (37 +/- 2%) and BTEA (35 +/- 2%), an indication that the membrane potential (V(M)) dependence for K(+)(o) activation of the Na,K pump current was unaffected by TEA and BTEA. TEA was found to inhibit the Na,K pump current in a V(M)-independent manner, i.e., inhibition of current dissipated 4 +/- 2% of the membrane electric field. In contrast, BTEA dissipated 40 +/- 5% of the membrane electric field during inhibition of Na,K pump current. Thus, BTEA inhibition of the Na,K-ATPase is V(M)-dependent. The competitive nature of inhibition as well as the similar fractions of the membrane electric field dissipated during K(+)(o)-dependent activation and BTEA-dependent inhibition of Na,K pump current suggest that BTEA inhibits the Na,K-ATPase at or very near the enzyme's K(+)(o) binding site(s) located in the membrane electric field. Given previous findings that organic quaternary amines are not occluded by the Na,K-ATPase, these data clearly demonstrate that an ion channel-like structure provides access to K(+)(o) binding sites in the enzyme.  相似文献   

17.
We describe and compare the main kinetic characteristics of rabbit kidney Na,K-ATPase incorporated inside-out in DPPC:DPPE-liposomes with the C(12)E(8) solubilized and purified form. In proteoliposomes, we observed that the ATP hydrolysis of the enzyme is favored and also its affinity for Na(+)-binding sites increases, keeping the negative cooperativity with two classes of hydrolysis sites: one of high affinity (K(0.5)=6 microM and 4 microM for reconstituted enzyme and purified form, respectively) and another of low affinity (K(0.5)=0.4 mM and 1.4 mM for reconstituted enzyme and purified form, respectively). Our data showed a biphasic curve for ATP hydrolysis, suggesting the presence of (alphabeta)(2) oligomer in reconstituted Na,K-ATPase similar to the solubilized enzyme. The Mg(2+) concentration dependence in the proteoliposomes stimulated the Na,K-ATPase activity up to 476 U/mg with a K(0.5) value of 0.4 mM. The Na(+) ions also presented a single saturation curve with V(M)=551 U/mg and K(0.5)=0.2 mM with cooperative effects. The activity was also stimulated by K(+) ions through a single curve of saturation sites (K(0.5)=2.8 mM), with cooperative effects and V(M)=641 U/mg. The lipid microenvironment close to the proteic structure and the K(+) internal to the liposome has a key role in enzyme regulation, affecting its kinetic parameters while it can also modulate the enzyme's affinity for substrate and ions.  相似文献   

18.
The present study was oriented to gender specificity of Na,K-ATPase in cerebellum, the crucial enzyme maintaining the intracellular homeostasis of Na ions in healthy and diabetic Wistar rats. The effects of diabetes on properties of the Na,K-ATPase in cerebellum derived from normal and streptozotocin (STZ)-diabetic rats of both genders were investigated. The samples were excised at different time intervals of diabetes induced by STZ (65 mg kg?1) for 8 days and 16 weeks. In acute 8-day-lasting model of diabetes, Western blot analysis showed significant depression of α1 isoform of Na,K-ATPase in males only. On the other hand, concerning the activity, the enzyme seems to be resistant to the acute model of diabetes in both genders. Prolongation of diabetes to 16 weeks was followed by increasing the number of active molecules of Na,K-ATPase exclusively in females as indicated by enzyme kinetic studies. Gender specificity was observed also in nondiabetic animals revealing higher Na,K-ATPase activity in control males probably caused by higher number of active enzyme molecules as indicated by increased value of V max when comparing to control female group. This difference seems to be age dependent: at the age of 16 weeks, the V max value in females was higher by more than 90%, whereas at the age of 24 weeks, this difference amounted to only 28%. These data indicate that the properties of Na,K-ATPase in cerebellum, playing crucial role in maintaining the Na+ and K+ gradients, depend on gender, age, and duration of diabetic impact.  相似文献   

19.
The Na,K-ATPase transports three sodium ions out of the cell and two potassium ions into the cell using ATP hydrolysis for energy. The ion gradient formed by the Na,K-ATPase contributes to the resting membrane potential, maintains cellular excitability and is important for glucose and amino acid uptake in the cell. The alpha1 catalytic isoform is expressed in virtually all cell types. We have previously examined cardiac physiology of mice lacking one copy of the alpha1 isoform gene of the Na,K-ATPase. The observation of reduced cardiac contractility in the alpha1 heterozygous mice was unexpected since mice heterozygous for the alpha2 isoform displayed enhanced cardiac contractility similar to what would be observed with cardiac glycoside treatment. We further examined hearts from alpha1 heterozygous mice to identify genomic responses to reduced Na,K-ATPase capacity. Using microarray analyses, we identified groups of genes whose expressions were perturbed in the alpha1 heterozygous hearts compared to wild-type. Known functional relationships of these genes suggest that multiple biological pathways are altered by alpha1 hemizygosity including activation of the renin-angiotensin system, changes in genes of energy metabolism and transport and elevated brain natriuretic peptide. This suggests that Na,K-ATPase alpha1 isoform activity may be required in numerous cellular processes.  相似文献   

20.
Direct dose-dependent effects of angiotensin II on renal tubular sodium reabsorption have been demonstrated. Alterations in tubular sodium reabsorption may occur via modulation of renal Na,K-ATPase activity. Thus, these experiments were undertaken to ascertain whether angiotensin II could influence renal cortical Na,K-ATPase activity. Angiotensin II, 495 ng/microliters/h, or vehicle (controls) was infused for 24 h via miniosmotic pumps 48 h after rats were adrenalectomized and implanted with osmotic pumps containing 12.5 micrograms/microliters corticosterone (Treatment I) or both corticosterone and 0.2 microgram/microliter aldosterone (Treatment II), and in rats receiving 3% NaCl in their food (sodium loaded, Treatment III). Rats receiving Treatments I and III received saline to drink. Renal cortical microsomal membranes were prepared, and the effects of angiotensin II infusion on the K1/2 and Vmax for Na, K, and ATP determined. Angiotensin II infusions were associated with (i) a decrease (P less than 0.001) in the K1/2 for Na activation of Na,K-ATPase from 14 +/- 3 to 6 +/- 1 (n = 4 experiments), 16 +/- 1 to 12 +/- 1 (n = 5), and 12 +/- 3 to 7 +/- 1 (n = 5) mM (means +/- SE) for treatments I, II, and III, respectively; (ii) no changes in the K1/2 for K activation or the Km for ATP; (iii) no changes in the Vmax for Na, K, or ATP; and (iv) no change in Mg-ATPase activity. We conclude that angiotensin II infusion is associated with a decrease in the K1/2 of renal cortical Na,K-ATPase activity for sodium. This action of angiotensin II on the enzyme activity may contribute to the regulation of tubular sodium transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号