首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of plasmin, (EC 3.4.21.7), thrombin (EC 3.4.21.5), trypsin (EC 3.4.21.4) and chymotrypsin (EC 3.4.21.1) by antiplasmin, the recently described fast-reacting plasmin inhibitor of human plasma, was studied. To determine the quantitative importance of antiplasmin relative to the other plasma protease inhibitors, enzyme inhibition assays were performed on whole plasma and on plasma specifically depleted in antiplasmin, after addition of excess enzyme. Plasmin was the only enzyme for which the inhibitory capacity of antiplasmin-depleted plasma was lower than that of normal plasma. To determine the affinity of the enzymes for antiplasmin, as compared to the other inhibitors, various amounts of enzymes were added to normal plasma and the formation of enzyme-antiplasmin complexes studied by crossed immunoelectrophoresis using specific antisera against antiplasmin. Plasmin and trypsin, but not thrombin or chymotrypsin formed complexes with antiplasmin. It is concluded that antiplasmin is the only fast-reacting plasmin inhibitor of human plasma. It is also a fast-reacting inhibitor of trypsin but only accounts for a very small part of the fast-reacting trypsin-inhibitory activity of plasma. This can be explained by the low concentration of antiplasmin (1 muM) in normal plasma, compared to the other inhibitors (e.g. alpha1-antitrypsin: 40-80 muM).  相似文献   

2.
3.
4.
Inhibition of plasmin by fibrinogen.   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetics of inhibition of the amidolytic activity of plasmin on D-Val-L-Leu-L-Lys p-nitroanilide hydrochloride (S-2251) by fibrinogen and fibrin were determined. Reciprocal (1/v versus 1/[S]) plots of plasmin inhibition by 0.50 microM-fibrinogen showed a non-linear downward curve. The Hill coefficient (h) was 0.68, suggesting negative co-operativity. By contrast, fibrin produced a simple competitive inhibition of plasmin (Ki = 12 micrograms/ml). Addition of 0.1 mM-6-aminohexanoic acid shifted the non-linear curve obtained in the presence of fibrinogen to a straight line as for controls, indicating that 6-aminohexanoic acid abolishes the fibrinogen-induced inhibition. Transient exposure of the enzyme to pH 1.0 abrogates the ability of fibrinogen to inhibit plasmin activity. Acidification had no effect on the Vmax but increased the Km of plasmin. The present evidence for modulation of plasmin reveals a novel mechanism for control of fibrinolysis by fibrinogen, a component of the coagulation system and the precursor of the physiological substrate of plasmin.  相似文献   

5.
The rate of plasmin denaturation was in the order of Lys-plasmin greater than miniplasmin greater than microplasmin. Fibrinogen degradation products (FDP) dose dependently increased the denaturation rate of Lys-plasmin and mini-plasmin with a maximal rate constant at the FDP/plasmin ratio of about 0.5. The denaturation rate constant of microplasmin was not affected. FDP increased the rate of plasmin denaturation was in parallel with its effect on the interaction among kringle domains. Without FDP only trace amounts of plasminogen dimer could be detected by cross-linking with bis-(sulfo-succinimidyl)-suberate followed by SDS gel electrophoresis. In the low concentration of FDP significant amounts of oligomers of Glu-, mini-plasminogens, kringle 1-3 and kringle 1-5 were observed. High concentration of FDP, however, decreased plasminogen oligomer.  相似文献   

6.
New hydrosoluble fluorogenic substrates for plasmin gluconoylpeptidyl-3-amido-9-ethylcarbazole were synthesized. The substitution of the N-terminal end of the peptides by a gluconoyl group prevents the substrates from aminopeptidase degradation and highly increases their hydrosolubility. The substitution of the peptide C-terminal end by a 3-amino-9-ethylcarbazole group leads to substrates suitable for direct fluorometric assay of plasmin present in cell supernatants or in cell lysates. On the basis of the kinetic parameters of the substrate hydrolysis by plasmin, it was found that D amino acids in the P2 position decrease systematically the kinetic constants of the substrates. The L configuration of the P2 amino acid appears therefore as essential in optimum substrates for plasmin.  相似文献   

7.
8.
9.
Interaction of plasmin with endothelial cells.   总被引:5,自引:0,他引:5       下载免费PDF全文
Interaction of human plasmin with a monolayer culture of mini-pig aortic endothelial cells was studied by using the 125I-labelled enzyme. The binding of plasmin was time- and concentration-dependent. Equilibrium between bound and free enzyme was obtained within 90s, and Scatchard analysis indicated a high- and a low-affinity population of binding sites of approx. 1.24 X 10(4) sites/cell having a Kd of 1.4 X 10(-9) M and 7.2 X 10(4) sites/cell with a Kd of 2 X 10(-8) M respectively. Plasmin, bound to cell, was spontaneously released within 2 min, suggesting a rapid equilibrium. Chemical modification of the enzyme with phenylmethanesulphonyl fluoride or pyridoxal 5'-phosphate revealed that neither the active centre nor the heparin-binding site of plasmin was involved in the interaction with the endothelial cell. In terms of endothelial-cell receptors, the binding sites of cells for plasmin and thrombin were different: the two enzymes did not compete with each other, and the pretreatment of cells with neuraminidase or chondroitin ABC lyase resulted in a 50% decrease of thrombin or plasmin binding respectively. Arachidonic acid incorporated into phospholipids of the cell was released by plasmin, but a change in the rate of prostacyclin formation was not measurable. The interaction of plasmin with endothelial cells seems to be specific in the fibrinolytic system, since plasminogen did not bind to these cells under similar conditions.  相似文献   

10.
Actin is a noncompetitive plasmin inhibitor.   总被引:1,自引:0,他引:1  
Actin, one of the most abundant cellular proteins, circulates at micromolar concentrations in peripheral blood. Because actin released from dying cells may be trapped in fibrin clots that form at sites of tissue injury, we examined the effects of actin upon lysis of fibrin clots in vitro. Incorporation of native rabbit skeletal muscle actin into fibrin clots slowed their rates of lysis for periods of up to 24 h, an effect not seen when comparable concentrations of human IgG or bovine serum albumin were added instead. Actins isolated from a variety of sources inhibited plasmin's hydrolysis of the synthetic substrate S-2251 in a noncompetitive manner, with a Ki of a 0.6-3.1 microM. Inhibition was rapid, but covalent actin-plasmin complexes were not formed. Both epsilon-aminocaproic acid and tranexamic acid prevented actin's inhibition of plasmin, suggesting that accessible lysine residues of actin interact with the kringle (lysine-binding) regions of plasmin. Neither of the high-affinity actin-binding proteins of plasma (plasma gelsolin and vitamin D-binding protein) prevented actin from inhibiting plasmin. These findings suggest that actin released into the extracellular space following cell death may modulate plasmin action, and hence a number of plasmin-dependent biological responses, at sites of inflammation and tissue injury.  相似文献   

11.
Pretreatment of hog high molecular weight renin for 30 min at 37 degrees C with 0.12 unit of either kallikrein or thrombin significantly increased (p less than 0.001) the amount of angiotensin I formed during subsequent incubations with homologous angiotensinogen. However, the thrombin-treated hog renin had 13 times more activity than the kallikrein-treated enzyme. Aprotinin did not inhibit the kallikrein-mediated activation of renin; the results indicated that aprotinin inhibited renin preferentially. Plasmin (0.25 unit) had little effect on the activity of high molecular weight renin. The molecular weight of hog renin on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was not altered after exposure to either kallikrein, thrombin, or plasmin. These results do not exclude the occurrence of a limited proteolytic event or a conformational change beyond the detection of the current method. The data show that the activation of hog high molecular weight renin by thrombin and kallikrein was not associated with the conversion of renin to Mr = 43,000.  相似文献   

12.
Streptokinase reacts very rapidly with human plasmin (rate constant 5.4 S 10(7) M-1 s-1) forming a 1:1 stoichiometric complex which has a dissociation constant of 5 X 10(-11) M. This plasmin-streptokinase complex is 10(5) times less reactive towards alpha 2-antiplasmin than plasmin, the inhibition rate constant being 1.4 X 10(2) M-1 s-1. The loss of reactivity of the streptokinase-plasmin complex towards alpha 2-antiplasmin is independent of the lysine binding sites in plasmin since low-Mr plasmin, which lacks these sites, and plasmin in which the sites have been blocked by 6-aminohexanoic acid, are both equally unreactive towards alpha 2-antiplasmin on reaction with streptokinase. The plasmin-streptokinase complex binds to Sepharose-lysine and Sepharose-fibrin monomer in the same fashion as free plasmin, showing that the lysine binding sites are fully exposed in the complex. Bovine plasmin is rapidly inhibited by human alpha 2-antiplasmin (k1 = 1.6 X 10(6) M-1 s-1) and similarly loses reactivity towards the inhibitor on complex formation with streptokinase (50% binding at 0.4 microM streptokinase).  相似文献   

13.
14.
The fibrinolytic activity of plasmin was determined by incubating with fibrin-fixed Blue Dextran as a substrate, the Blue Dextran released being proportional to the plasmin activity. The applicability of this method for rapid and accurate evaluation of fibrinolytic activity was demonstrated by dose-response curves with purified plasmin, plasmin generated by urokinase in human plasma and euglobulin. The method can also be used to determined plasmin inhibitors in plasma.  相似文献   

15.
alpha 2-Antiplasmin Enschede is a variant of alpha 2-antiplasmin which has lost its ability to inhibit plasmin irreversibly and which is associated with a haemorrhagic disorder [Kluft et al. (1987) J. Clin. Invest. 80, 1391-1400]. The abnormal protein was purified from the plasma of a homozygous patient and subjected to one-dimensional peptide mapping using papain for digestion. A slightly abnormally migrating polypeptide (Mr 17,000) was found which represented the C-terminal part of the molecule (the N-terminus of the polypeptide corresponded to Gly-338 in normal alpha 2-antiplasmin) and which contained the reactive centre. The interaction of plasmin with alpha 2-antiplasmin Enschede was studied by adding plasmin to plasma of the homozygous patient. SDS/polyacrylamide-gel electrophoresis and immunoblotting showed that no complex persisted, but that the abnormal alpha 2-antiplasmin was cleaved into two fragments of Mr 56,000 and 14,000 respectively. The latter fragment co-migrated with the post-complex peptide, which is cleaved from normal alpha 2-antiplasmin during complex-formation with plasmin. In a purified system, catalytic amounts of plasmin rapidly cleaved alpha 2-antiplasmin Enschede into the aforementioned fragments. In kinetic studies alpha 2-antiplasmin Enschede reversibly and temporarily inhibited the plasmin-catalysed hydrolysis of D-valyl-L-leucyl-L-lysine p-nitroanilide ('S-2251') as a competitive inhibitor (Ki,app. 35 nM). It was concluded that alpha 2-antiplasmin Enschede apparently forms a normal complex with plasmin. The complex is, however, not stable, but disintegrates rapidly to a cleaved form of alpha 2-antiplasmin Enschede and active plasmin. The abnormal protein thus behaves like a substrate, instead of an inhibitor, of plasmin.  相似文献   

16.
Plasmin(ogen) receptors are expressed by many gram-positive and gram-negative bacteria. We previously isolated a plasmin receptor from a pathogenic group A streptococcal strain (C. C. Broder, R. Lottenberg, G. O. von Mering, K. H. Johnston, and M. D. P. Boyle, J. Biol. Chem. 266:4922-4928, 1991). The gene encoding this plasmin receptor, plr, was isolated from a lambda gt11 library of chromosomal DNA from group A streptococcal strain 64/14 by screening plaques with antibodies raised against the purified streptococcal plasmin receptor protein. The gene was subcloned by using a low-copy-number plasmid and stably expressed in Escherichia coli, resulting in the production of an immunoreactive and functional receptor protein. The DNA sequence of the gene contained an open reading frame encoding 335 amino acids with a predicted molecular weight of 35,787. Upstream of the open reading frame, putative promoter and ribosomal binding site sequences were identified. The experimentally derived amino acid sequences of the N terminus and three cyanogen bromide fragments of the purified streptococcal plasmin receptor protein corresponded to the predicted sequence encoded by plr. The deduced amino acid sequence for the plasmin receptor protein revealed significant similarity (39 to 54% identical amino acid residues) to glyceraldehyde 3-phosphate dehydrogenases.  相似文献   

17.
18.
19.
20.
The primary structure of the human plasmin B-chain has been determined. It consists of 230 residues divided in three cyanogen bromide fragments: The amino-terminal 24 residues, the carboxy-terminal three residues and the middle 203 residues. Sequence detemination was performed on the tryptic and the chymotryptic peptides obtained from the main cyanogen bromide fragment of this chain. Owing to similarities between some of the overlapping chymotryptic peptides, two different sequences were possible from these results. However, since the homologies with the pancreatic serine proteases and also the B-chains of thrombin and factor XA are pronounced, the arrangement still could be settled. By peptic digestion of partially reduced and S-carboxymethylated B-chain it was shown that there are two interchain disulphide bridges, which connect the A and B-chains of plasmin, involving Cys-5 and Cys-105 from the B-chain. The intrachain disulphides in the B-chain seem to be situated exactly as in chymotrypsin as partly judged from homologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号