首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) comprises more than 35 subunits, the majority of which are encoded by the nucleus. In Chlamydomonas reinhardtii, only five components (ND1, ND2, ND4, ND5 and ND6) are coded for by the mitochondrial genome. Here, we characterize two mitochondrial mutants (dum5 and dum17) showing strong reduction or inactivation of complex I activity: dum5 is a 1T deletion in the 3' UTR of nd5 whereas dum17 is a 1T deletion in the coding sequence of nd6. The impact of these mutations and of mutations affecting nd1, nd4 and nd4/nd5 genes on the assembly of complex I is investigated. After separation of the respiratory complexes by blue native (BN)-PAGE or sucrose gradient centrifugation, we demonstrate that the absence of intact ND1 or ND6 subunit prevents the assembly of the 850 kDa whole complex, whereas the loss of ND4 or ND4/ND5 leads to the formation of a subcomplex of 650 kDa present in reduced amount. The implications of our findings for the possible role of these ND subunits on the activity of complex I and for the structural organization of the membrane arm of the enzyme are discussed. In mitochondria from all the strains analyzed, we moreover detected a 160-210 kDa fragment comprising the hydrophilic 49 kDa and 76 kDa subunits of the complex I peripheral arm and showing NADH dehydrogenase activity.  相似文献   

2.
NADH:ubiquinone oxidoreductase (complex I) is the first and largest enzyme of the mitochondrial respiratory chain. The low-resolution structure of the complex is known from electron microscopy studies. The general shape of the complex is in the form of an L, with one arm in the membrane and the other peripheral. We have purified complex I from beef heart mitochondria and reconstituted the enzyme into lipid bilayers. Under different conditions, several two-dimensional crystal forms were obtained. Crystals belonging to space groups p222(1) and c12 (unit cell 488 Ax79 A) were obtained at 22 degrees C and contained only the membrane fragment of complex I similar to hydrophobic subcomplex Ibeta but lacking the ND5 subunit. A crystal form with larger unit cell (534 Ax81 A, space group c12) produced at 4 degrees C contained both the peripheral and membrane arms of the enzyme, except that ND5 was missing. Projection maps from frozen hydrated samples were calculated for all crystal forms. By comparing two different c12 crystal forms, extra electron density in the projection map of large crystal form was assigned to the peripheral arm of the enzyme. One of the features of the map is a deep, channel-like, cleft next to peripheral arm. Comparison with available structures of the intact enzyme indicates that large hydrophobic subunit ND5 is situated at the distal end of the membrane domain. Possible locations of subunit ND4 and of other subunits in the membrane domain are proposed. Implications of our findings for the mechanism of proton pumping by complex I are discussed.  相似文献   

3.
Mitochondrial complex I is the main site for electron transfer to the respiratory chain and generates much of the proton gradient across the inner mitochondrial membrane. Complex I is composed of two arms, which form a conserved L-shape. We report the structures of the intact, 47-subunit mitochondrial complex I from Arabidopsis thaliana and the 51-subunit complex I from the green alga Polytomella sp., both at around 2.9 Å resolution. In both complexes, a heterotrimeric γ-carbonic anhydrase domain is attached to the membrane arm on the matrix side. Two states are resolved in A. thaliana complex I, with different angles between the two arms and different conformations of the ND1 (NADH dehydrogenase subunit 1) loop near the quinol binding site. The angle appears to depend on a bridge domain, which links the peripheral arm to the membrane arm and includes an unusual ferredoxin. We propose that the bridge domain participates in regulating the activity of plant complex I.

An unusual ferredoxin completes a protein bridge that links the two arms of plant mitochondrial complex I and adjusts their angle in an open or closed conformation.  相似文献   

4.
Analyses of mitochondrial DNA sequences from three species of Habronattus jumping spiders (Chelicerata: Arachnida: Araneae) reveal unusual inferred tRNA secondary structures and gene arrangements, providing new information on tRNA evolution within chelicerate arthropods. Sequences from the protein-coding genes NADH dehydrogenase subunit 1 (ND1), cytochrome oxidase subunit I (COI), and subunit II (COII) were obtained, along with tRNA, tRNA, and large-subunit ribosomal RNA (16S) sequences; these revealed several peculiar features. First, inferred secondary structures of tRNA and, likely, tRNA, lack the TPsiC arm and the variable arm and therefore do not form standard cloverleaf structures. In place of these arms is a 5-6-nt T arm-variable loop (TV) replacement loop such as that originally described from nematode mitochondrial tRNAs. Intraspecific variation occurs in the acceptor stem sequences in both tRNAs. Second, while the proposed secondary structure of the 3' end of 16S is similar to that reported for insects, the sequence at the 5' end is extremely divergent, and the entire gene is truncated about 300 nt with respect to Drosophila yakuba. Third, initiation codons appear to consist of ATY (ATT and ATC) and TTG for ND1 and COII, respectively. Finally, Habronattus shares the same ND1-tRNA-16S gene arrangement as insects and crustaceans, thus illustrating variation in a tRNA gene arrangement previously proposed as a character distinguishing chelicerates from insects and crustaceans.  相似文献   

5.
Murai M  Mashimo Y  Hirst J  Miyoshi H 《Biochemistry》2011,50(32):6901-6908
Quinazolines are strong inhibitors of NADH-ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Using a photoreactive quinazoline, [(125)I]AzQ, and bovine heart submitochondrial particles (SMPs), we demonstrated previously that [(125)I]AzQ binds at the interface of the 49 kDa and ND1 subunits in complex I; it labeled a site in the N-terminal (Asp41-Arg63) region of the 49 kDa subunit, suggesting that this region contacts the ND1 subunit [Murai, M., et al. (2009) Biochemistry 48, 688-698]. The labeled region of ND1 could not be identified because it is highly hydrophobic, and the SMPs did not yield sufficient amounts of labeled protein. Here, we describe how photoaffinity labeling of isolated complex I by [(125)I]AzQ yielded sufficient material for identification of the labeled region of the ND1 subunit. The inhibition of the isolated enzyme by AzQ is comparable to that of SMPs. Our results reveal that the labeled site in ND1 is between Asp199 and Lys262, mostly likely in the third matrix loop that connects the fifth and sixth transmembrane helices. Thus, our results reveal new information about the interface between the hydrophilic and hydrophobic domains of complex I, a region that is thought to be important for ubiquinone reduction and energy transduction.  相似文献   

6.
Mitochondrial complex I, the largest and most complicated proton pump of the respiratory chain, links the electron transfer from NADH to ubiquinone to the pumping of four protons from the matrix into the intermembrane space. In humans, defects in complex I are involved in a wide range of degenerative disorders. Recent progress in the X-ray structural analysis of prokaryotic and eukaryotic complex I confirmed that the redox reactions are confined entirely to the hydrophilic peripheral arm of the L-shaped molecule and take place at a remarkable distance from the membrane domain. While this clearly implies that the proton pumping within the membrane arm of complex I is driven indirectly via long-range conformational coupling, the molecular mechanism and the number, identity, and localization of the pump-sites remains unclear. Here, we report that upon deletion of the gene for a small accessory subunit of the Yarrowia complex I, a stable subcomplex (nb8mΔ) is formed that lacks the distal part of the membrane domain as revealed by single particle analysis. The analysis of the subunit composition of holo and subcomplex by three complementary proteomic approaches revealed that two (ND4 and ND5) of the three subunits with homology to bacterial Mrp-type Na(+)/H(+) antiporters that have been discussed as prime candidates for harbouring the proton pumps were missing in nb8mΔ. Nevertheless, nb8mΔ still pumps protons at half the stoichiometry of the complete enzyme. Our results provide evidence that the membrane arm of complex I harbours two functionally distinct pump modules that are connected in series by the long helical transmission element recently identified by X-ray structural analysis.  相似文献   

7.
Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations.Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the Km value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.  相似文献   

8.
Fenpyroximate is a potent inhibitor of the mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I). We synthesized its photoaffinity analogue [(3)H](trifluoromethyl)phenyldiazirinylfenpyroximate ([(3)H]TDF). When bovine heart submitochondrial particles (SMP) were illuminated with UV light in the presence of [(3)H]TDF, radioactivity was mostly incorporated into a 50 kDa band. There was a good correlation between radioactivity labeling of the 50 kDa band and inhibition of the NADH oxidase activity, indicating that a 50 kDa protein is responsible for the inactivation of complex I. Blue native gel electrophoresis of the [(3)H]TDF-labeled SMP revealed that the majority of radioactivity was found in complex I. Analysis of the complex I band on an SDS gel showed a major peak of radioactivity at approximately 50 kDa. There are three subunits in complex I that migrate in this region: FP51K, IP49K, and ND5. Further analysis using the 2D gel electrophoresis implied that the labeled protein was the ND5 subunit. Labeling of the ND5 subunit was stimulated by NADH/NADPH but was prevented by various complex I inhibitors. Amiloride derivatives that are known to be inhibitors of Na(+)/H(+) antiporters also diminished the labeling. In agreement with the protective effect, we observed that the amiloride derivatives inhibited NADH-ubiquinone-1 reductase activity but not NADH-K(3)Fe(CN)(6) reductase activity in bovine SMP. These results suggest that the ND5 subunit is involved in construction of the inhibitor- and quinone-binding site(s). Furthermore, it seems likely that the ND5 subunit may participate in H(+)(Na(+)) translocation in coupling site 1.  相似文献   

9.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.  相似文献   

10.
This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.  相似文献   

11.
Natural acetogenins are among the most potent inhibitors of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I). Our photoaffinity labeling study suggested that the hydroxylated bis-THF ring moiety of acetogenins binds at "site A" in the third matrix-side loop connecting the fifth and sixth transmembrane helices in the ND1 subunit [Kakutani et al. (2010) Biochemistry 49, 4794-4803]. Nevertheless, since this proposition was led using a photoreactive Δlac-acetogenin derivative, it needs to be directly verified using a natural acetogenin-type probe. We therefore conducted photoaffinity labeling using a photoreactive natural acetogenin mimic ([(125)I]diazinylated natural acetogenin, [(125)I]DANA), which has a small photolabile diazirine group, in place of a hydroxy group, attached to the bis-THF ring moiety. Analysis of the photocross-linked protein in bovine heart submitochondrial particles unambiguously revealed that [(125)I]DANA binds to the membrane subunit ND1 with high specificity. The photocross-linking was completely blocked in the presence of just a 5-fold excess of bullatacin, indicating that [(125)I]DANA is an excellent mimic of natural acetogenins and hence binds to the site that accommodates natural products. Careful examination of the fragmentation patterns of the cross-linked ND1 generated by different proteases and their combinations indicated that the cross-linked residue is predominantly located at the supposed site A in the third matrix-side loop.  相似文献   

12.
The mitochondrial NADH dehydrogenase (complex I) in mammalian cells is a multimeric enzyme consisting of approximately 40 subunits, 7 of which are encoded in mitochondrial DNA (mtDNA). Very little is known about the function of these mtDNA-encoded subunits. In this paper, we describe the efficient isolation from a human cell line of mutants affected in any of these subunits. In the course of analysis of eight mutants of the human cell line VA2B selected for their resistance to high concentrations of the complex I inhibitor rotenone, seven were found to be respiration deficient, and among these, six exhibited a specific defect of complex I. Transfer of mitochondria from these six mutants into human mtDNA-less cells revealed, surprisingly, in all cases a cotransfer of the complex I defect but not of the rotenone resistance. This result indicated that the rotenone resistance resulted from a nuclear mutation, while the respiration defect was produced by an mtDNA mutation. A detailed molecular analysis of the six complex I-deficient mutants revealed that two of them exhibited a frameshift mutation in the ND4 gene, in homoplasmic or in heteroplasmic form, resulting in the complete or partial loss, respectively, of the ND4 subunit; two other mutants exhibited a frameshift mutation in the ND5 gene, in near-homoplasmic or heteroplasmic form, resulting in the ND5 subunit being undetectable or strongly decreased, respectively. It was previously reported (G. Hofhaus and G. Attardi, EMBO J. 12:3043-3048, 1993) that the mutant completely lacking the ND4 subunit exhibited a total loss of NADH:Q1 oxidoreductase activity and a lack of assembly of the mtDNA-encoded subunits of complex I. By contrast, in the mutant characterized in this study in which the ND5 subunit was not detectable and which was nearly totally deficient in complex I activity, the capacity to assemble the mtDNA-encoded subunits of the enzyme was preserved, although with a decreased efficiency or a reduced stability of the assembled complex. The two remaining complex I-deficient mutants exhibited a normal rate of synthesis and assembly of the mtDNA-encoded subunits of the enzyme, and the mtDNA mutation(s) responsible for their NADH dehydrogenase defect remains to be identified. The selection scheme used in this work has proven to be very valuable for the isolation of mutants from the VA2B cell line which are affected in different mtDNA-encoded subunits of complex I and may be applicable to other cell lines.  相似文献   

13.
Previously, we characterized a mouse cell line, 4A, carrying a mitochondrial DNA mutation in the subunit for respiratory complex I, NADH dehydrogenase, in the ND6 gene. This mutation abolished the complex I assembly and disrupted the respiratory function of complex I. We now report here that a galactose-resistant clone, 4AR, was isolated from the cells carrying the ND6 mutation. 4AR still contained the homoplasmic mutation, and apparently there was no ND6 protein synthesis, whereas the assembly of other complex I subunits into complex I was recovered. Furthermore, the respiratory activity and mitochondrial membrane potential were fully recovered. To investigate the genetic origin of this compensation, the mitochondrial DNA (mtDNA) from 4AR was transferred to a new nuclear background. The transmitochondrial lines failed to grow in galactose medium. We further transferred mtDNA with a nonsense mutation at the ND5 gene to the 4AR nuclear background, and a suppression for mitochondrial deficiency was observed. Our results suggest that change(s) in the expression of a certain nucleus-encoded factor(s) can compensate for the absence of the ND6 or ND5 subunit.  相似文献   

14.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

15.
Murai M  Ishihara A  Nishioka T  Yagi T  Miyoshi H 《Biochemistry》2007,46(21):6409-6416
The inhibitor binding domain in bovine complex I is believed to be constructed by multisubunits, but it remains to be learned how the binding positions of chemically diverse inhibitors relate to each other. To get insight into the inhibitor binding domain in complex I, we synthesized a photoreactive acetogenin [[125I](trifluoromethyl)phenyldiazirinylacetogenin, [125I]TDA], in which an aryldiazirine group serves as both a photoreactive group and a substitute for the gamma-lactone ring that is a common toxophore of numerous natural acetogenins, and carried out photoaffinity labeling to identify the labeled subunit using bovine heart submitochondrial particles (SMP). When SMP were UV-irradiated in the presence of [125I]TDA, radioactivity was predominantly incorporated into an approximately 30 kDa band on a SDS gel. Blue native gel electrophoresis of the [125I]TDA-labeled SMP revealed that the majority of radioactivity was observed in complex I. Analysis of complex I on a SDS gel showed a predominant peak of radioactivity at approximately 30 kDa. Immnoprecipitation of the [125I]TDA-labeled complex I with anti-bovine ND1 antibody indicated that the labeled protein is the ND1 subunit. A variety of complex I inhibitors such as piericidin A and rotenone efficiently suppressed the specific binding of [125I]TDA to ND1, indicating that they share a common binding domain. However, the suppression efficiency of Deltalac-acetogenin, a new type of complex I inhibitor synthesized in our laboratory, was much lower than that of the traditional inhibitors. Our results unequivocally reveal that the ND1 subunit constructs the inhibitor binding domain, though the contribution of this subunit has been challenged. Further, the present study corroborates our previous proposition that the inhibition site of Deltalac-acetogenins differs from that of traditional inhibitors.  相似文献   

16.
Complex I (NADH:ubiquinone oxidoreductase) purified from bovine heart mitochondria was treated with the detergent N, N-dimethyldodecylamine N-oxide (LDAO). The enzyme dissociated into two known subcomplexes, Ialpha and Ibeta, containing mostly hydrophilic and hydrophobic subunits, and a previously undetected fragment referred to as Igamma. Subcomplex Igamma contains the hydrophobic subunits ND1, ND2, ND3, and ND4L which are encoded in the mitochondrial genome, and the nuclear-encoded subunit KFYI. During size-exclusion chromatography in the presence of LDAO, subcomplex Ialpha lost several subunits and formed another characterized subcomplex known as Ilambda. Similarly, subcomplex Ibeta dissociated into two smaller subcomplexes, one of which contains the hydrophobic subunits ND4 and ND5; subcomplex Igamma released a fragment containing ND1 and ND2. These results suggest that in the intact complex subunits ND1 and ND2 are likely to be in a different region of the membrane domain than subunits ND4 and ND5. The compositions of the various subcomplexes and fragments of complex I provide an organization of the subunits of the enzyme in the framework of the known low resolution structure of the enzyme.  相似文献   

17.
Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.  相似文献   

18.
Leber''s hereditary optic neuropathy (LHON) is a maternally inherited blinding disease due to mitochondrial DNA (mtDNA) point mutations in complex I subunit genes, whose incomplete penetrance has been attributed to both genetic and environmental factors. Indeed, the mtDNA background defined as haplogroup J is known to increase the penetrance of the 11778/ND4 and 14484/ND6 mutations. Recently it was also documented that the professional exposure to n-hexane might act as an exogenous trigger for LHON. Therefore, we here investigate the effect of the n-hexane neurotoxic metabolite 2,5-hexanedione (2,5-HD) on cell viability and mitochondrial function of different cell models (cybrids and fibroblasts) carrying the LHON mutations on different mtDNA haplogroups. The viability of control and LHON cybrids and fibroblasts, whose mtDNAs were completely sequenced, was assessed using the MTT assay. Mitochondrial ATP synthesis rate driven by complex I substrates was determined with the luciferine/luciferase method. Incubation with 2,5-HD caused the maximal loss of viability in control and LHON cells. The toxic effect of this compound was similar in control cells irrespective of the mtDNA background. On the contrary, sensitivity to 2,5-HD induced cell death was greatly increased in LHON cells carrying the 11778/ND4 or the 14484/ND6 mutation on haplogroup J, whereas the 11778/ND4 mutation in association with haplogroups U and H significantly improved cell survival. The 11778/ND4 mutation on haplogroup U was also more resistant to inhibition of complex I dependent ATP synthesis by 2,5-HD. In conclusion, this study shows that mtDNA haplogroups modulate the response of LHON cells to 2,5-HD. In particular, haplogroup J makes cells more sensitive to its toxic effect. This is the first evidence that an mtDNA background plays a role by interacting with an environmental factor and that 2,5-HD may be a risk element for visual loss in LHON. This proof of principle has broad implications for other neurodegenerative disorders such as Parkinson''s disease.  相似文献   

19.
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.  相似文献   

20.
We determined the primary structure of a 9.6-kDa subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria and found a close relationship between this subunit and the bacterial or chloroplast acyl-carrier protein. The degree of sequence identity amounts to 80% in a region of 19 residues around the serine to which the phosphopantetheine is bound. The N-terminal presequence of the subunit has the characteristic features of a mitochondrial import sequence. We cultivated the auxotroph pan-2 mutant of N. crassa in the presence of [14C]pantothenate and recovered all radioactivity incorporated into mitochondrial protein in the 9.6-kDa subunit of complex I. We cultivated N. crassa in the presence of chloramphenicol to accumulate the nuclear-encoded peripheral arm of complex I. This pre-assembled arm also contains the 9.6-kDa subunit. These results demonstrate that an acyl-carrier protein with pantothenate as prosthetic group is a constituent part of complex I in N. crassa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号