首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding chitinases from Aeromonas sp. No. 10S-24 was cloned into Escherichia coli DH5α using pUC19, and its nucleotides were sequenced. The chitinase gene was clustered in ORFs (open reading frame) 1 to 4, in a 8-kb fragment of DNA. ORF-1 consisted of 1608 bp encoding 535 amino acid residues, and ORF-2 consisted of 1425 bp encoding 474 amino acid residues. ORF-3 was 1617 bp long and encodes a protein consisting of 538 amino acids. ORF-4 encodes 287 amino acids of the N-terminal region. The amino acid sequences of ORF-1 and ORF-3 share sequence homology with chitinase D from Bacillus circulans, and chitinase A and B from Streptomyces lividans. The amino acid sequence of ORF-2 shared sequence homology with chitinase II from Aeromonas sp. No. 10S-24, and chitinase from Saccharopolyspora erythraea. A region of the sequence starting from Ala-28 of the amino acid sequence of ORF-3 coincided with the N-terminal amino acid sequence of chitinase III from Aeromonas sp. No. 10S-24.  相似文献   

2.
Family 19 chitinase from Aeromonas sp. No.10S-24 (72.6 kDa) is composed of two chitin-binding domains (ChBDs), two proline- and threonine-rich (PT-rich) linkers, and a catalytic domain. The purified enzyme was labile in a standard buffer condition and spontaneously degraded into a 46-kDa fragment upon storage at 4 degrees C. The N-terminal sequence of the 46-kDa fragment was found to correspond to the sequence of the C-terminal region of the second PT-rich linker, indicating that the 46-kDa fragment is produced by truncation of the two ChBDs and the two PT-rich linkers from the mature protein, and consists only of the catalytic domain. The hydrolytic activities toward insoluble and soluble substrates were significantly reduced by the truncation of two ChBDs. In addition, antifungal activity determined from the digestion rate of haustoria of powdery mildew was reduced by the ChBD truncation. Although the profile of the time-course of N-acetylglucosamine hexasaccharide [(GlcNAc)6] degradation catalyzed by the ChBD-truncated enzyme was similar to that of the mature enzyme protein, the specific activity of the ChBD-truncated enzyme determined from the rate of hexasaccharide degradation was lower than that of the mature enzyme. The two CBDs appear to be responsible for facilitating the hydrolytic reaction. The sugar residue affinities (binding free energy changes) at the individual subsites, (-2) (-1) (+1) (+2) (+3) (+4), were estimated by modeling the hexasaccharide hydrolysis by the mature and ChBD-truncated enzymes. The truncation of ChBDs was found to strongly affect the affinity at the (-1) site. This situation seems to result in the lower enzymatic activity of the ChBD-truncated enzyme toward the chitinous substrates.  相似文献   

3.
A chitinase-producing bacterium, designated WS7b, was isolated from a soil sample obtained from a black-pepper plantation on Bangka Island, Indonesia. Fatty-acid methyl-ester analysis indicated that the isolate was Aeromonas caviae. A chitinase gene from WS7b was cloned in a pUC19-based plasmid vector, but without its natural promoter. The complete nucleotide sequence of the gene was determined, and the structural gene consisted of a 2748-bp region encoding 864 amino acids. DNA sequence analysis indicated that the gene had been cloned without its promoter, and this was confirmed by chitinase-plate assay of the truncated version of the gene in Escherichia coli. The chitinase gene product showed amino-acid sequence similarity to chiA from A. caviae. Chitinase enzyme activity was determined spectrophotometrically, using colloidal chitin azure as substrate for extracellular and intracellular fractions. The ability of the chitinase cloned in E. coli to hydrolyze chitin was less than that of the enzyme in its indigenous host.  相似文献   

4.
【背景】几丁质是自然界中储藏量仅次于纤维素的有机物,几丁质酶能降解几丁质生成几丁寡糖,实现废弃物的高值化利用,目前菌株产几丁质酶能力低限制了它的生产应用。【目的】克隆弧菌(Vibrio sp.)GR52的几丁质酶基因,实现其在大肠杆菌中的异源表达,对分离纯化的重组几丁质酶进行酶学性质研究。【方法】以弧菌GR52菌株基因组DNA为模板,克隆得到几丁质酶基因GR52-1,构建重组基因工程菌BL21(DE3)/p ET22b-chi GR52-1,诱导表达的产物通过Ni-NTA树脂纯化后进行酶学性质研究。【结果】重组酶的最适反应pH为6.0,在pH5.0-10.0范围内37°C保温1 h仍能保持85%以上的相对酶活力,具有较好的pH稳定性;最适反应温度为50°C,在45°C保温1 h其酶活力基本没有损失,在50°C保温1 h其残余酶活力仍达60%;在1 mmol/L浓度下,Cu~(2+)、Ca2+对该酶具有促进作用,Hg+对该酶具有明显的抑制作用;在5 mmol/L浓度下,Ni+对该酶具有一定的促进作用,Mn~(2+)、Co~(2+)、Li~+、Fe~(2+)、Hg~+、SDS(十二烷基硫酸钠)对该酶具有明显的抑制作用。以胶体几丁质为底物时,动力学参数Km、Vmax、kcat分别为0.85 mg/m L、0.19μmol/(m L·min)和7.02 s-1。底物特异性分析表明该重组酶能特异性降解几丁质。【结论】重组几丁质酶具有良好的酶学性质,为几丁质酶的开发应用奠定基础。  相似文献   

5.
The gene encoding an extracellular chitinase from marine Alteromonas sp. strain O-7 was cloned in Escherichia coli JM109 by using pUC18. The chitinase produced was not secreted into the growth medium but accumulated in the periplasmic space. A chitinase-positive clone of E. coli produced two chitinases with different molecular weights from a single chitinase gene. These proteins showed almost the same enzymatic properties as the native chitinase of Alteromonas sp. strain O-7. The N-terminal sequences of the two enzymes were identical. The nucleotide sequence of the 3,394-bp SphI-HindIII fragment that included the chitinase gene was determined. A single open reading frame was found to encode a protein consisting of 820 amino acids with a molecular weight of 87,341. A putative ribosome-binding site, promoter, and signal sequence were identified. The deduced amino acid sequence of the cloned chitinase showed sequence homology with chitinases A (33.4%) and B (15.3%) from Serratia marcescens. Regardless of origin, the enzymes of the two bacteria isolated from marine and terrestrial environments had high homology, suggesting that these organisms evolved from a common ancestor.  相似文献   

6.
An extracellular secreted chitinase gene from Aeromonas hydrophila was cloned in Escherichia coli, and the gene product was detected in the culture medium. Like the natural chitinase protein, the excreted chitinase had a molecular weight of approximately 85,000 and was subject to catabolite repression by glucose.  相似文献   

7.
An extracellular secreted chitinase gene from Aeromonas hydrophila was cloned in Escherichia coli, and the gene product was detected in the culture medium. Like the natural chitinase protein, the excreted chitinase had a molecular weight of approximately 85,000 and was subject to catabolite repression by glucose.  相似文献   

8.
We describe the cloning, overexpression, purification, characterization and crystal structure of chitinase G, a single-domain family 19 chitinase from the Gram-positive bacterium Streptomyces coelicolor A3(2). Although chitinase G was not capable of releasing 4-methylumbelliferyl from artificial chitooligosaccharide substrates, it was capable of degrading longer chitooligosaccharides at rates similar to those observed for other chitinases. The enzyme was also capable of degrading a colored colloidal chitin substrate (carboxymethyl-chitin-remazol-brilliant violet) and a small, presumably amorphous, subfraction of alpha-chitin and beta-chitin, but was not capable of degrading crystalline chitin completely. The crystal structures of chitinase G and a related Streptomyces chitinase, chitinase C [Kezuka Y, Ohishi M, Itoh Y, Watanabe J, Mitsutomi M, Watanabe T & Nonaka T (2006) J Mol Biol358, 472-484], showed that these bacterial family 19 chitinases lack several loops that extend the substrate-binding grooves in family 19 chitinases from plants. In accordance with these structural features, detailed analysis of the degradation of chitooligosaccharides by chitinase G showed that the enzyme has only four subsites (- 2 to + 2), as opposed to six (- 3 to + 3) for plant enzymes. The most prominent structural difference leading to reduced size of the substrate-binding groove is the deletion of a 13-residue loop between the two putatively catalytic glutamates. The importance of these two residues for catalysis was confirmed by a site-directed mutagenesis study.  相似文献   

9.
The gene encoding chitinase from Streptomyces sp. (strain J-13-3) was cloned and its nucleotide structure was analyzed. The chitinase consisted of 298 amino acids containing a signal peptides (29 amino acids) and a mature protein (269 amino acids), and had calculated molecular mass of 31,081 Da. The calculated molecular mass (28,229 Da) of the mature protein was almost same as that of the native chitinase determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometer. Comparison of the encoded amino acid sequences with those of other chitinases showed that J-13-3 chitinase was a member of the glycosyl-hydrolase family 19 chitinases and the mature protein had a chitin binding domain (65 amino acids) containing AKWWTQ motif and a catalytic domain (204 amino acids). The J-13-3 strain had a single chitinase gene. The chitinase (298 amino acids) with C-terminal His tag was overexpressed in Escherichia coli BL21(DE3) cells. The recombinant chitinase purified from the cell extract had identical N-terminal amino acid sequence of the mature protein in spite of confirmation of the nucleotide sequence, suggesting that the signal peptide sequence is successfully cut off at the predicted site by signal peptidase from E. coli and will be a useful genetic tool in protein engineering for production of soluble recombinant protein. The optimum temperature and pH ranges of the purified chitinase were at 35-40 degrees C and 5.5-6.0, respectively. The purified chitinase hydrolyzed colloidal chitin and trimer to hexamer of N-acetylglucosamine and also inhibited the hyphal extension of Tricoderma reesei.  相似文献   

10.
A gene, isp-B, encoding an intracellular serine protease from a newly isolated Bacillus sp. WRD-2 was cloned and characterized. Nucleotide sequence analysis showed an open reading frame of 960 bp encoding a polypeptide comprised of 319 amino acids. The primary structure of the enzyme predicted the structural features characteristic of other intracellular serine proteases, including active sites, Ser, His and Asp, as well as no signal sequence. The predicted amino acid sequence showed more than 60% homology with the intracellular serine proteases from Bacillus species. When expressed in E. coli, the recombinant enzyme (rISP-B) was overproduced in the cytoplasm as soluble and active form. The purified enzyme was completely inhibited by phenylmethylsulfonyl fluoride, EDTA and antipain. The enzyme showed maximum activity at pH 8.0 and 45 degrees C. It was stable atpH from 7.5 to 11.0 and below 50 degrees C.  相似文献   

11.
The chitinolytic bacterium Aeromonas hydrophila strain SUWA-9, which was isolated from freshwater in Lake Suwa (Nagano Prefecture, Japan), produced several kinds of chitin-degrading enzymes. A gene coding for an endo-type chitinase (chiA) was isolated from SUWA-9. The chiA ORF encodes a polypeptide of 865 amino acid residues with a molecular mass of 91.6 kDa. The deduced amino acid sequence showed high similarity to those of bacterial chitinases classified into family 18 of glycosyl hydrolases. chiA was expressed in Escherichia coli and the recombinant chitinase (ChiA) was purified and examined. The enzyme hydrolyzed N-acetylchitooligomers from trimer to pentamer and produced monomer and dimer as a final product. It also reacted toward colloidal chitin and chitosan with a low degree of deacetylation. When cells of SUWA-9 were grown in the presence of colloidal chitin, a 60 kDa-truncated form of ChiA that had lost the C-terminal chitin-binding domain was secreted.  相似文献   

12.
A chitinase encoding gene from Bacillus sp. DAU101 was cloned in Escherichia coli. The nucleotide sequencing revealed a single open reading frame containing 1781 bp and encoding 597 amino acids with 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram. The chitinase was composed of three domains: a catalytic domain, a fibronectin III domain, and a chitin binding domain. The chitinase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 7.5 and 60 degrees C, respectively. The metal ions, Zn(2+), Cu(2+), and Hg(2+), were strongly inhibited chitinase activity. However, chitinase activity was increased 1.4-fold by Co(2+). Chisb could hydrolyze GlcNAc(2) to N-acetylglucosamine and was produced GlcNAc(2), when chitin derivatives were used as the substrate. This indicated that Chisb was a bifunctional enzyme, N-acetylglucosaminase and chitobiosidase. The enzyme could not hydrolyze glycol chitin, glycol chitosan, or CMC, but hydrolyzed colloidal chitin and soluble chitosan.  相似文献   

13.
14.
【背景】某些假交替单胞菌可分泌几丁质酶,在降解利用几丁质为水产动物提供营养、免疫、抗病等方面有着重要潜力。【目的】克隆杀鱼假交替单胞菌(Pseudoalteromonas piscicida)C923的一个几丁质酶基因,实现其在大肠杆菌中的异源表达,并对重组几丁质酶的酶学性质进行研究。【方法】从菌株C923测序的基因组中注释到一个几丁质酶家族基因PpchiC,设计引物克隆该基因后进行生物信息学分析;构建载体进行异源表达并从温度、时间与诱导剂浓度进行表达优化;对表达蛋白进行最适温度与pH等酶学性质研究,同时比较了重组菌破碎后上清与沉淀及纯化的酶蛋白对几丁质的降解效应。【结果】基因PpchiC长1350bp,编码450个氨基酸,PpchiC蛋白理论分子量为48.76kDa,等电点为4.78,不稳定系数为29.08。结构域分析发现该蛋白含有一个类型Ⅲ几丁质结合域和一个糖苷水解酶18家族(glycosyl hydrolase 18,GH18)的催化域;PpchiC蛋白含有GH18家族几丁质酶的保守催化基序DxxDxDxE、YxR和[E/D]xx[V/I]。16℃、0.25mmol/L IPTG、诱导12h为其最优化表达条件,PpchiC在50℃、pH8.0时表现出最大酶活性;以胶体几丁质为底物时,PpchiC的Km值为2.58mg/mL、Vmax值为5.04mg/(mL·min)。降解结果表明,菌体的沉淀与上清及从上清中纯化的酶蛋白均有着较好的几丁质降解效应。【结论】杀鱼假交替单胞菌C923基因PpchiC编码GH18家族的几丁质酶,能被大肠杆菌高效表达且降解几丁质效应明显,这为PpchiC及菌株C923的应用提供了参考依据。  相似文献   

15.
A family 18 chitinase gene chiA from the thermophile Rhodothermus marinus was cloned and expressed in Escherichia coli. The gene consisted of an open reading frame of 1,131 nucleotides encoding a protein of 377 amino acids with a calculated molecular weight of 42,341 Da. The deduced ChiA was a non-modular enzyme with one unique glycoside hydrolase family 18 catalytic domain. The catalytic domain exhibited 43% amino acid identity with Bacillus circulans chitinase C. Due to poor expression of ChiA, a signal peptide-lacking mutant, chiAsp, was designed and used subsequently. The optimal temperature and pH for chitinase activity of both ChiA and ChiAsp were 70°C and 4.5–5, respectively. The enzyme maintained 100% activity after 16 h incubation at 70°C, with half-lives of 3 h at 90°C and 45 min at 95°C. Results of activity measurements with chromogenic substrates, thin-layer chromatography, and viscosity measurements demonstrated that the chitinase is an endoacting enzyme releasing chitobiose as a major end product, although it acted as an exochitobiohydrolase with chitin oligomers shorter than five residues. The enzyme was fully inhibited by 5 mM HgCl2, but excess ethylenediamine tetraacetic acid relieved completely the inhibition. The enzyme hydrolyzed 73% deacetylated chitosan, offering an attractive alternative for enzymatic production of chitooligosaccharides at high temperature and low pH. Our results show that the R. marinus chitinase is the most thermostable family 18 chitinase isolated from Bacteria so far.  相似文献   

16.
从废弃的淀粉堆中筛选到一株产低温淀粉酶的蜡样芽孢杆菌(Bacillus cereus)GXBC-1,通过同源保守序列比对,从中克隆到一个淀粉酶基因.该基因全长为1764bp,编码588个氨基酸,分子量约为64kD.将基因克隆到大肠杆菌进行表达及酶学性质研究,该重组酶最适温度为35℃,在20℃仍具有53%的活力;最适pH...  相似文献   

17.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

18.
Chitinase-A (BcChi-A) was purified from a moss, Bryum coronatum, by several steps of column chromatography. The purified BcChi-A was found to be a molecular mass of 25 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an isoelectric point of 3.5. A cDNA encoding BcChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1012 nucleotides and encoded an open reading frame of 228 amino acid residues. The predicted mature BcChi-A consists of 205 amino acid residues and has a molecular weight of 22,654. Sequence analysis indicated that BcChi-A is glycoside hydrolase family-19 (GH19) chitinase lacking loops I, II, IV and V, and a C-terminal loop, which are present in the catalytic domain of plant class I and II chitinases. BcChi-A is a compact chitinase that has the fewest loop regions of the GH19 chitinases. Enzymatic experiments using chitooligosaccharides showed that BcChi-A has higher activity toward shorter substrates than class II enzymes. This characteristic is likely due to the loss of the loop regions that are located at the end of the substrate-binding cleft and would be involved in substrate binding of class II enzymes. This is the first report of a chitinase from mosses, nonvascular plants.  相似文献   

19.
A recombinant chitinase was purified from the cell extract of Escherichia coli JM109 transformed by plasmid pUC19 carrying the gene encoding family 19 chitinase of Streptomyces sp. J-13-3 by column chromatography on DEAE-Sepharose, CM-Sepharose, and Bio-Gel P-100. The final preparation was homogenous in polyacrylamide gel electrophoresis. The molecular weight of the purified enzyme was estimated to be 32,000. The recombinant chitinase hydrolyzed the trimer to hexamer of N-acetylglucosamine and had the identical N-terminal amino acid sequence of the mature protein, indicating removal of the signal sequence by E. coli signal peptidase. The fungal growth in well (200 microl of medium) of microplate by measurement of absorbance at 595 nm indicated that the chitinase (10 microg) completely and half inhibited growth of Trichoderma reesei and Aspergillus niger respectively.  相似文献   

20.
A marine psychrotolerant bacterium from the Antarctic Ocean showing high chitinolytic activity on chitin agar at 5 degrees C was isolated. The sequencing of the 16S rRNA indicates taxonomic affiliation of the isolate Fi:7 to the genus Vibrio. By chitinase activity screening of a genomic DNA library of Vibrio sp. strain Fi:7 in Escherichia coli, three chitinolytic clones could be isolated. Sequencing revealed, for two of these clones, the same open reading frame of 2,189 nt corresponding to a protein of 79.4 kDa. The deduced amino acid sequence of the open reading frame showed homology of 82% to the chitinase ChiA from Vibrio harveyi. The chitinase of isolate Fi:7 contains a signal peptide of 26 amino acids. Sequence alignment with known chitinases showed that the enzyme has a chitin-binding domain and a catalytic domain typical of other bacterial chitinases. The chitinase ChiA of isolate Fi:7 was overexpressed in E. coli BL21(DE3) and purified by anion-exchange and hydrophobic interaction chromatography. Maximal enzymatic activity was observed at a temperature of 35 degrees C and pH 8. Activity of the chitinase at 5 degrees C was 40% of that observed at 35 degrees C. Among the main cations contained in seawater, i.e., Na+, K+, Ca2+, and Mg2+, the enzymatic activity of ChiA could be enhanced twofold by the addition of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号