首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the effect of different chromium (CrVI) treatments on seedlings of semi-aquatic plant Barringtonia acutangula, hydroponic experiments were conducted. Results revealed that B. acutangula could tolerate much higher CrVI concentration accumulated about 751–2,703 mg kg?1 dry weight in roots and 50–1,101 mg kg?1 dry weight in shoots, respectively, under 1.0, 2.0, 3.0, 4.0, and 5.0 mM chromium treatments. CrVI exposure at 1.0–4.0 mM does not exhibit toxicity signs; however, up to 4.0 mM CrVI exposure causes significant decline in growth parameters. Content of macronutrients such as Ca and K decreased under different Cr treatments in roots and shoots, while Mg content of roots and shoots did not influence at the range of 1.0–4.0 mM Cr; however, significant decrease at 5.0 mM Cr, besides P content, significantly shows increasing trends, respectively. Interestingly, sulfur content of roots and shoots show increasing trends at 1.0–2.0 mM Cr; however, severe decrease of up to 3.0–5.0 mM is shown in CrVI treatments. Furthermore, micronutrients content were enhanced under CrVI treatments excluding Cu and Fe since they show significant reduction in shoots as well as in roots. Bioaccumulation factor were also calculated on the basis of results obtained which shows the value of >1 without viewing chromium toxicity symptoms. This study demonstrated that B. acutangula could tolerate CrVI concentrations up to 1.0–4.0 mM Cr which may be useful in chromium phytoremediation programs.  相似文献   

2.
High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F? in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F? concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F?. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F? promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F? had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.  相似文献   

3.
The effect of sulphate nutrition on arsenic (As) concentration, photosynthetic and chlorophyll fluorescence parameters of rice was investigated in hydroponically grown rice seedlings (Oryza sativa L.), using three sulphate levels (1.8 μM, 0.7 mM, or 1.5 mM). The results showed that sulphate deficiency decreased As accumulation in root, but increased the translocation of As from root to shoot. Sulphate deficiency reduced maximum quantum yield (Fv/Fm), minimum fluorescence and electron transport rate (ETR) of a dark-adapted leaf. Compared with low sulphate treatments (1.8 μM), significant increases were observed in the parameters of rapid light curves, rETRmax and I k of photosystem I (PSI) and photosystem II (PSII) of rice grown in the high sulphate treatments (1.5 mM) regardless of As additions. Therefore, an adequately high sulphate supply may result in less As translocation from root to shoot, and protecting the reaction pathways of PSI and PSII of rice seedlings grown in higher As-contaminated medium.  相似文献   

4.
The present study is aimed at assessing the ability of Klebsiella pneumoniae and Klebsiella variicola to oxidize trivalent arsenic into its pentavalent form. K. pneumoniae could tolerate As(III) (26.6 mM) and K. variicola could tolerate As(III) (24 mM). K. pneumoniae was able to resist Cd2+ and Hg2+ (1.3 mM), Cr6+ and Cu2+ (6.6 mM) and Ni2+ (5.3 mM). K. variicola resisted Cd2+ (2.6 mM), Hg2+ (4 mM), Cr6+ (6.6 mM), Cu2+ (9.3 mM) and Ni2+ (5.3 mM). The optimum temperature and pH for K. pneumoniae and K. variicola were 7 and 30°C, respectively. K. pneumoniae could oxidize 36% As(III), 64% and 87% from the medium after 24, 48 and 72 h, respectively. Likewise K. variicola was also able to oxidize 33% As(III) after 24 h, 59% after 48 h and 83% after 72 h from the medium. The presence of an induced protein having molecular weight around 14 kDa in the presence of arsenic points out a possible role of this protein in arsenite oxidation. The bacterial isolates can be employed to bioremediate As-containing wastes.  相似文献   

5.
Acacia farnesiana is a shrub widely distributed in soils heavily polluted with arsenic in Mexico. However, the mechanisms by which this species tolerates the phytotoxic effects of arsenic are unknown. This study aimed to investigate the tolerance and bioaccumulation of As by A. farnesiana seedlings exposed to high doses of arsenate (AsV) and the role of peroxidases (POX) and glutathione S-transferases (GST) in alleviating As-stress. For that, long-period tests were performed in vitro under different AsV treatments. A. farnesiana showed a remarkable tolerance to AsV, achieving a half-inhibitory concentration (IC50) of about 2.8 mM. Bioaccumulation reached about 940 and 4380 mg As·kg?1 of dry weight in shoots and roots, respectively, exposed for 60 days to 0.58 mM AsV. Seedlings exposed to such conditions registered a growth delay during the first 15 days, when the fastest As uptake rate (117 mg kg?1 day?1) occurred, coinciding with both the highest rate of lipid peroxidation and the strongest up-regulation of enzyme activities. GST activity showed a strong correlation with the As bioaccumulated, suggesting its role in imparting AsV tolerance. This study demonstrated that besides tolerance to AsV, A. farnesiana bioaccumulates considerable amounts of As, suggesting that it may be useful for phytostabilization purposes.  相似文献   

6.
The aim of this study was to evaluate the bioavailability of arsenic (As) through cultured oyster Crassostrea gigas and Crassostrea corteziensis from four coastal lagoons (SE Gulf of California). Organisms were collected in two seasons (rainy and dry season), and they were analyzed for total arsenic and chemical speciation of this element. The concentrations of As in oyster soft tissue fluctuated between 5.44 and 9.56 μg/g for rainy season and 6.46 and 8.33 μg/g for dry season (dry weight) in C. gigas. In C. corteziensis, the As concentrations were <5 μg/g for both seasons (dry weight). Arsenic speciation indicated arsenobetaine as the major arseno-compound accounting for 43.2–76.3 % of total content of As. Lower contributions were obtained for non-extractable As (11.3–17.5 %) and other molecules such as arsenocholine and methyl-arsonate (<5 %). Inorganic arsenic was detectable in only two samples, at concentrations lower than <0.1 μg/g. These As data are the first generated for these mollusks in NW Mexico and indicate that C. gigas and C. corteziensis farmed in this area are safe for human consumption in terms of arseno-compounds.  相似文献   

7.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

8.
9.
To obtain bacteria with arsenic accumulation potential that can be used to remove arsenic from contaminated waters, experiments were made to investigate the tolerance and accumulation to arsenic of an indigenous bacterium XZM002 isolated from aquifer sediments of Datong Basin, northern China. The results showed that strain XZM002 belongs to the genus Bacillus and has evolved defense mechanisms to reduce arsenic injury: the change of cellular shape from initial rod to oval and then to round with increment of arsenic toxicity. The effect of arsenate or arsenite on the bacterial growth was also investigated. Results showed that growth of the strain was inhibited under As(III) and high concentration As(V) (over 1200 μg l?1) conditions in the first 2 days and promoted under low concentration As(V) (under 400 μg l?1) condition. Its arsenic bioaccumulation potential was surveyed by monitoring the concentration changes of total arsenic and arsenic speciation in the medium and in the cytoplasm, and those of total arsenic on the membrane. Methylated arsenic species were not detected throughout the experiment. The results indicated that 11.5% of arsenic was removed from liquid medium into the bacterial cells and 9.22% of As(V) in the medium was transformed gradually to As(III) during 4 d of incubation. Approximately 80% of the total accumulated arsenic was adsorbed onto the membrane instead of into cytoplasm; and the arsenic accumulation almost approached saturation after incubation for 72 h.  相似文献   

10.
Effect of nitric oxide (NO) in mitigating stress induced by arsenic (As) was assessed in Pistia stratiotes, with NO supplied as sodium nitroprusside (SNP). Plants were exposed to four treatments: control, SNP (0.1 mg L?1), As (1.5 mg L?1), As + SNP (1.5 and 0.1 mg L?1), for seven days (analyses of growth, absorption of As and mineral nutrients) and for 24 h (analyses of concentration of reactive oxygen intermediates (ROIs), antioxidant capacity and photosynthesis). P. stratiotes accumulated high concentrations of As and this accumulation wasn't affected by the addition of SNP, but the tolerance index of the plant to As increased. SNP attenuated effects of As on the absorption of mineral nutrients (Ca, Fe, Mn, and Mg), but not for phosphorus, and maintained concentrations of ROIs to normal levels, probably due to the increase in antioxidant capacity. The As damaged the photosynthesis by the decrease in pigment contents and by disturbance the photochemical (loss of PSII efficiency and increases in non-photochemical quenching coefficient) and biochemical (reductions in carbon assimilation, increase in the Ci/Ca and ΦPSIICO2 ratios) steps. The addition of SNP restored these parameters to normal levels. Thus, NO was able to increasing the resistance of P. stratiotes to As.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   

11.
The effect of arsenic on leaf photosynthetic rate, growth responses, and accumulation capability of Isatis cappadocica Desv., a Brassica collected from Iranian arsenic-contaminated mine spoils and control populations, was investigated. Both populations of I. cappadocica were considerably more tolerant than the reference Brassica species (Descurainia sophia). The 1,000 μM arsenate exposure inhibited root growth completely in D. sophia, but only by 50 and 40 % in the nonmine and mine populations of I. cappadocica, respectively. Furthermore, the chlorophyll contents of both populations of I. cappadocica were not statistically different, especially when plants were exposed to 5–800 μM As. The chlorophyll a fluorescence kinetics (F v/F m) and electron transfer rate values of treated I. cappadocica populations remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of arsenic. After 28 days of exposure to 1,300 μM As, shoot arsenic concentrations of mine and nonmine populations reached 310 and 345 mg kg?1, respectively, with the arsenic transfer factor and bioaccumulation greater than 1.0. According to these results, it was shown that I. cappadocica had strong tolerance to and the capability to hyperaccumulate arsenic; therefore, it is a potential As hyperaccumulator.  相似文献   

12.
Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved at initial concentration of 0.5 mg/l arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.  相似文献   

13.
This study was conducted to evaluate the influence of boron (B) application through seed coating on leaf elongation, tillering, water relations, panicle sterility, kernel yield, and grain biofortification of fine grain aromatic rice. Boron was applied as seed coating at 1.0, 1.5, 2.0, 2.5, and 3.0 g B kg?1 seed in two rice cultivars Super Basmati and Shaheen Basmati. Boron seed coating significantly affected the leaf elongation, water relations, panicle fertility, kernel yield and grain biofortification in both rice cultivars. However, seed coating with 1.0–2.0 g B kg?1 seed was effective in improving the leaf emergence and elongation, and tillering. Whereas water relations (water and osmotic potential) were improved by all B seed coating treatments, but pressure potential was only improved from seed coating with 2.0–3.0 g B kg?1 seed. Kernel yield was improved by all B seed coating treatments; however seed coating with 2 g B kg?1 seed was the most effective treatment in this regard. Increase in kernel yield, by B seed coating, was attributed to decrease in panicle sterility. Leaf and kernel B contents were increased with increase in B concentration in seed coating.  相似文献   

14.
The osmotic potential and effects of plasmolysis were investigated in two different Klebsormidium strains from alpine habitats by incubation in 300–2,000 (3,000) mM sorbitol. Several members of this genus were previously found to tolerate desiccation in the vegetative state yet information was lacking on the osmotic potentials of these algae. The strains were morphologically determined as Klebsormidium crenulatum and Klebsormidium nitens. These species belong to distinct clades, as verified by phylogenetic analysis of the rbcL gene. K. crenulatum is part of to the K. crenulatum/mucosum (‘F’ clade) and K. nitens of the ‘E2’ clade. Plasmolysis occurred in K. crenulatum at 800 mM sorbitol (961 mOsmol kg?1, Ψ?=??2.09 MPa) and in K. nitens at 600 mM sorbitol (720 mOsmol kg?1, Ψ?=??1.67 MPa). These are extraordinarily high osmotic values (very negative osmotic potentials) compared with values reported for other green algae. In K. crenulatum, the maximum photosynthetic rate (Pmax) in the light-saturated range was 116 μmol O2 h?1 mg?1 chl a. Incubation in 1,000 mM sorbitol decreased Pmax to 74.1% of the initial value, whereas 2,000 mM sorbitol (Ψ?=??5.87 MPa) lead to an almost complete loss of oxygen production. In K. nitens, Pmax was 91 μmol O2 h?1 mg?1 chl a under control conditions and incubation in 800 mM sorbitol did not decrease Pmax, 2,000 mM sorbitol decreased Pmax only to about 62.6% of the initial value whereas 3,000 mM sorbitol stopped oxygen evolution. This indicated a broader amplitude for photosynthesis in the examined strain of K. nitens. Control samples and samples plasmolysed for 3 h in 800 mM sorbitol (K. nitens), 1,000 mM sorbitol (K. crenulatum), or 2,000 mM sorbitol were investigated by transmission electron microscopy after chemical or high-pressure freeze fixation. In cells undergoing plasmolysis the protoplasts were retracted from the cell wall, the cytoplasm appeared dense, vacuoles were small and fragmented, and the cytoplasm was filled with ribosomes. Thin cytoplasmic strands were connected to the cell wall; 2,000 mM sorbitol increased the effect. The content of soluble carbohydrates in these two strains was investigated by HPLC, as this is one known mechanism for cells to maintain high osmotic pressure of the cytosol. Both Klebsormidium species contained diverse soluble carbohydrates, including a dominant mixed peak of unidentified oligosaccharides, and more minor amounts of raffinose, sucrose, glucose, xylose, galactose, mannose, inositol, fructose, glycerol, mannitol, and sorbitol. The total content of soluble carbohydrates was approximately 1.2% of the dry weight, indicating that this is not a major factor contributing to the high osmotic potential in these strains of Klebsormidium.  相似文献   

15.
Rumex maritimus (Polygonaceae) is an annual herb and is well known for its use in medicinal treatments. Although the pharmacological properties of R. maritimus are well documented, no phytotoxic activity of R. maritimus has yet been found. Therefore, we investigated the phytotoxic potential of R. maritimus to identify phytotoxic compounds. Inhibitory activity was found in aqueous methanol extracts of R. maritimus on the seedling growth of cress, rapeseed, barnyard grass, and foxtail fescue, in which inhibition increased with increasing extract concentration. Two compounds were isolated using chromatography, and using spectroscopy their structure was determined as 5,7-dihydroxyphthalide and altechromone A. 5,7-Dihydroxyphthalide significantly inhibited cress seedling growth by 27.2–43.0% of control seedlings at 3 mM, whereas altechromone A inhibited seedling growth by 65.4–66.3% at 0.01 mM. The concentrations required for 50% inhibition of cress seedling growth were 1.73–2.48 mM for 5,7-dihydroxyphthalide and 0.66–1.41 mM for altechromone A. These results indicate that the compounds 5,7-dihydroxyphthalide and altechromone A may contribute, to a certain extent, to the phytotoxic activity of R. maritimus.  相似文献   

16.
The potential of arsenic-resistant bacteria in association with Pteris vittata to reduce the level of arsenic from soil was studied. The physicochemical characteristics of contaminated paddy soil were analyzed, and 3 bacterial isolates amongst 11 were screened and were selected for further study. These three isolates were characterized by 16S rDNA sequencing and identified as Bacillus altitudinis Strain SS8 (KJ432582), Bacillus megaterium Strain SS9 (KJ432583) and Lysinibacillus sp. Strain SS11 (KJ432584). Of these, Lysinibacillus sp. Strain SS11 displayed arsenic tolerance of 3256 mg L?1 for arsenate and 1136 mg L?1 for arsenite. Additionally, it showed bioaccumulation capacity of 23.43 mg L?1 for arsenate and 5.65 mg L?1 for arsenite. It also showed resistance to other heavy metals, especially towards iron, copper and chromium. It was also observed that Pteris vittata was able to take up more arsenic and iron from soil in the presence of these bacterial strains than in their absence, leading to contaminant-free soil. Thus, this system appears to be an effective bioremediating process to remove arsenic from contaminated soil.  相似文献   

17.
Thyroid hormones are essential for body homeostasis. The scientific literature contains restricted proofs for effects of environmental chemical factors on thyroid function. The present study aimed at evaluating the relationship between toxicological parameters and concentration of thyrotropic hormone in persons occupationally exposed to lead, cadmium and arsenic. The studies were conducted on 102 consecutive workers occupationally exposed to lead, cadmium and arsenic (mean age 45.08 ± 9.87 years). The estimated parameters characterizing occupational exposure to metals included blood cadmium concentration (Cd-B), blood lead concentration (Pb-B), blood zinc protoporphyrin concentration (ZnPP) and urine arsenic concentration (As-U). Thyroid function was evaluated using the parameter employed in screening studies, the blood thyrotropic hormone concentration (TSH). No differences were disclosed in mean values of toxicological parameters between the subgroup of persons occupationally exposed to lead, cadmium and arsenic with TSH in and out of the accepted normal values. Logistic regression demonstrated that higher blood total bilirubin concentrations (ORu = 4.101; p = 0.025) and higher Cd-B (ORu = 1.532; p = 0.027) represented independent risk factors of abnormal values of TSH in this group. In conclusion, in the group of workers exposed to lead, cadmium and arsenic, higher blood cadmium concentration seems to augment the risk of abnormal hormonal thyroid function.  相似文献   

18.
Ginkgo suspension cells were used to investigate the mechanism that governs the shift between primary and secondary metabolism under NaCl elicitation. The production of three flavonol glycosides, chlorophyll fluorescence, ion content, the antioxidant system, and the cellular ultrastructure in the presence of NaCl doses from 5 to 175 mM were examined. At low salt doses (5–50 mM), cell growth and flavonol glycosides accumulation were stimulated without damaging cell structure or inducing oxidative stress by maintaining high K+ and chlorophyll content. At moderate salt doses (75–125 mM), the cells could withstand the salt stress without an impact on survival by changing internal cellular structure, maintaining high levels of K+ and Ca2+ and increasing anti-oxidative enzyme activities rather than flavonol glycosides to counteract the inhibition of the photosystem II, the accumulation of Na+ and hydrogen peroxide (H2O2) in the cells. This allowed cells to divert their metabolism from growth to defense-related pathways and tolerate NaCl stress. At higher salinity (150–175 mM), the cellular structure was damaged, and the high Na+ and low K+ content led to osmotic stress, and therefore, the stimulation of peroxidase (POD) and catalase (CAT) was not enough to cope with high H2O2 accumulation. The high production of flavonol glycosides may be a response of elicitation stimulation to serious damage at 175 mM NaCl. In conclusion, the use of 175 mM NaCl may be desirable for the induction of flavonol glycoside production in Ginkgo suspension cells.  相似文献   

19.
The Amycolatopsis cihanbeyliensis Mut43, which is obtained by UV radiation, exhibited endoglucanase activity of 5.21?U/mL, which was ~2.3-fold higher than that of the wild strain (2.04?U/mL). The highest enzyme activity was obtained after 3 days of incubation at 32?°C, pH 7.0, 150?rpm, and 6% NaCl in a liquid medium containing 1.5% (w/v) wheat straw (0.25?mm of particle size) and 0.6% (w/v) yeast extract. Enzyme activity was eluted as a single peak (gel filtration chromatography), and Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) analysis of the corresponding peak revealed a molar mass of 30?kDa. Zymogram analysis confirmed the presence of a single active endoglucanase component. The enzyme was purified to ~21-fold, and the mean overall yield was ~6%. The purified endoglucanase was active up to 80?°C and showed a half-life of 214?min at 60?°C in the absence of substrate at pH 8.0. The apparent Km value for the purified endoglucanase was 0.70?mg/mL, while the Vmax value was 6.20 Units/μg. Endoglucanase activity was reduced (25%) by treatment with 30?U of proteinase K/mg. The addition of Mg+2 and Ca+2 (5?mM) enhanced endoglucanase activity. Additionally, endoglucanase activity in the presence of 5?mM SDS or organic solvents was 75 and 50% of maximum activity, respectively. The high levels of enzyme production from A. cihanbeyliensis Mut43 achieved under batch conditions, coupled with the temperature stability, activity over a broad pH range, relatively high stability (70–80%) in the presence of industrial laundry detergents and storage half-lives of 45 days at +4?°C and 75 days at ?20?°C signify the suitability of this enzyme for industrial applications as detergent additive.  相似文献   

20.
Toxicity of chromium often impairs the remediation capacity of plants used in phytoremediation of polluted soils. In this study, we have identified Albizia lebbeck as a prospective chromium hyperaccumulator and examined cultivable diversity of endophytes present in chromium-treated and control saplings. High numbers (22–100%) of endophytic bacteria, isolated from root, stem, and leaf tissues, could tolerate elevated (1–3 mM) concentrations of K2CrO7. 16S rRNA gene sequence-based phylogenetic analysis showed that the 118 isolates obtained comprised of 17 operational taxonomic units affiliated with the proteobacterial genera Rhizobium (18%), Marinomonas (1%), Pseudomonas (16%), and Xanthomonas (7%) but also with members of Firmicutes genera, such as Bacillus (35%) and Salinococcus (3%). The novel isolates belonging to Salinococcus and Bacillus could tolerate high K2CrO7 concentrations (3 mM) and also showed elevated activity of chromate reductase. In addition, majority (%) of the endophytic isolates also showed production of indole-3-acetic acid. Taken together, our results indicate that the innate endophytic bacterial community assists plants in reducing heavy metal toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号