首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metals (Al, Cd, Co, Cr, Cu, Fe, Pb, Zn) in surface soil of Klang district were determined and multivariate analysis was used to understand their potential sources. The total and bioavailability of concentrations were used in identifying the potential risks to the ecology and human health. The means for the total heavy metal concentrations were found to be in the order of Fe > Al > Zn > Pb > Cu > Cr > Co > Cd, while the means for the bioavailability concentrations were found to be in the order of Al > Fe > Zn > Cu > Co > Cd > Pb > Cr. Principal Component Analysis showed Principal Component 1 as being of natural origin whereas Principal Components 2, 3, and 4 were associated with mixed anthropogenic sources, such as traffic and industrial emissions, organic matter, and granulometric fractions. Potential ecological risk assessment indicated an overall low ecological risk. Spatial assessment of non-carcinogenic risks showed that the Hazard Index values were more than one in Johan Setia, due to biomass burning of peat swamps exploited for agricultural development. While for spatial assessment of carcinogenic risks, the Lifetime Cancer Risk values were in the limit (1 × 10?5), indicating low cancer inducing risks. Nevertheless, with intense development pressure in the Klang district could overlap pollution inputs in the future.  相似文献   

2.
Levels of Cd, Ni, and Pb in topsoil (0–5 cm) taken from seven different sites of the urban city of Akure, Nigeria, were determined using flame atomic absorption spectrophotometer after the wet digestion method. This was with a view to appraising the influence of various anthropogenic activities on heavy metal contamination of the urban soil. Results show that the range of Cd was 6.27–10.34 ppm, Ni 7.17–14.78 ppm, and Pb 9.22- 46.19 ppm. This analytical data indicated a significant accumulation of heavy metals above background levels, with highest concentrations found in mechanic/battery charger workshops. The level of accumulation was assessed using accumulation factor (AF), and the values obtained exceeded 4 in all sites. This implies that the heavy metals are not from the natural geochemistry of Akure but from human activities. The classes of contamination were differentiated using geoaccumulation index (I geo). The I geo performed revealed that Cd (2< I geo<3: Class 3), Ni (2< I geo<4: Class 3 and 4) and Pb (3< I geo<5: Class 4 and 5) belong to different classes of geoaccumulation index, but the contamination patterns (moderately to strongly contaminated) are similar in all sites, except the mechanic battery/charger workshop (moderately to extremely contaminated). The differences observed in the metal concentrations among the sites are statistically significant (P < 0.05).  相似文献   

3.
Health Risk Assessment of Heavy Metals in Urban Soil of Karachi,Pakistan   总被引:1,自引:0,他引:1  
The potential health risk due to lifetime exposure to copper, lead, chromium, zinc, and iron in urban soil of Karachi, Pakistan, was evaluated. Mean concentrations of Cu, Pb, Cr, Zn, and Fe in topsoil samples were 33.3 ± 12.8, 42.1 ± 55.8, 9.6 ± 4.2, 99.5 ± 37.3, and 908.4 ± 57.8 mg kg?1, respectively. A U.S. Environmental Protection Agency model was adopted for the carcinogenic and non-carcinogenic risk assessment from different exposure pathways. Risk assessment indicated that the overall results for the carcinogenic risk were insignificant. However, the carcinogenic risk from Pb due to oral ingestion of soil exceeded the value of 1 × 10?6, in some areas of the city. It indicates that the exposure to Pb-contaminated soil may cause adverse health effects in humans, especially in children. The Hazard Quotient (HQ) for different metals through ingestion and dermal pathways was also found to be less than 1. The combined Hazard Index (HI) for children through different routes of exposure was 8.9 times greater than for adults. It indicates that the children are more susceptible to non-carcinogenic health effects of trace metals compared to adults. Particularly, non-carcinogenic risk of Pb to children via oral ingestion needs special attention.  相似文献   

4.
Risk assessors are often cautioned against the use of tests of highly bioavailable salt solutions added to soil to estimate the bioaccumulation of chemicals from waste site soils by plants. In this investigation, a large number of laboratory and field studies that measured the bioaccumulation of inorganic chemicals in plants were reviewed. The objective was to discern whether or not the relationship between the concentration of the element in aboveground vegetation and that in soil was different if the contamination was aged in the field rather than freshly added to soil in salt solution. For two of the eight elements, selenium and cadmium, salt solution experiments were associated with greater soil-plant uptake ratios than field measurements. Thus, these are not reliable data for use in the derivation of plant uptake regressions for screening-level ecological risk assessments at field sites. In contrast, the plant uptake of arsenic, copper, lead, mercury, nickel, and zinc, when added in salt solutions, was generally within the 95% prediction limit of regressions derived from field data. Chemical form, plant taxon, soil type, experimental methodology, and aging may be as important as the source of the chemical in predicting plant uptake of inorganic chemicals from soil.  相似文献   

5.
The objectives of this study are to monitor the heavy metal concentrations in sludge samples collected from the Ankara Central Wastewater Treatment Plant (ACWWTP) in Turkey, check if these concentrations comply with the Turkish Regulation (Regulation Regarding the Use of Domestic and Urban Sludges on Soil), and evaluate possible health risks of heavy metals in sludge due to ingestion of sludge by a child. Monthly sludge samples were collected from the ACWWTP during 2012 and analyzed for seven heavy metals (Cd, Cr, Cu, Hg, Ni, Pb, and Zn). According to the results from the study, heavy metal concentrations showed no common seasonal trend. All heavy metal concentrations, except for one sample in which Zn was found to be at the limit value, are below the Turkish Regulation limits. In addition, health risks calculations for the “child ingesting biosolids” pathway, which is one of the most critical pathways identified by the U.S. Environmental Protection Agency (USEPA) for land application, were carried out. Among the seven heavy metals, Pb contributed the most to the cumulative non-cancer health risks throughout 2012. Nevertheless, the results showed that cumulative non-cancer health risks associated with this pathway are within the acceptable non-cancer health risk level suggested by USEPA.  相似文献   

6.
A high level of heavy metals in soil would negatively impact human health if these metals are consumed by humans through the food chain. The effect of nanomaterials, including SiO2-Al2O3-Fe2O3, on heavy metals in alkaline soil was studied through simulating leaching in the soil column. Nanomaterials that weighed 4%, 6%, and 10% of the soil mass were added to a soil column in which garlic was planted. Leaching tests were conducted. Heavy metals in the soil leachate of different soil depths and different parts of the plant planted in the soil column were determined using a high-resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). The results indicated that the migration of heavy metals through alkaline soil was inhibited. In the test with nanomaterials of 4% soil mass, 63% Cu, 79% Cd, 68% Pb, 89% Zn, and 76% Ni were decreased compared to the control. When the addition of nanomaterials was up to 6% of soil mass, 82% Cu, 92% Cd, 76% Pb, 91% Zn, and 88% Ni were reduced, respectively. No additional apparent results were observed with more nanomaterials added to the soil column. The nanomaterials effectively prevented heavy metal migration, especially inhibiting heavy metal migration downward. Nanomaterials will be promising in subsequent studies.  相似文献   

7.
Soils contaminated with toxic metals may be environmental hazards and sources of exposure to human population. Soils in mining areas are among the most heavily contaminated by metals from the mining activity. This study was focused on metals of interest in bioavailability studies using single and sequential extraction methods. Results of geochemical fractionation suggest that changes in soil characteristics may enhance the mobilization of Cu, Cr, Zn, and Al. The observed metals’ availability pattern was Cr > Cu > Zn > Al. However, the pattern of total contents of metals in soils was Al > Cr > Zn > Cu. Risks to human adults and children from selected metals through soil ingestion was assessed in terms of incremental lifetime average daily dose (LADD), hazard quotient (HQ), and hazard index (HI). The estimated LADDs and HI were within acceptable reference doses and less than 1, respectively, indicating low risk to human populations from the studied metals through soil ingestion in the studied mine area. The generated data may be useful in remediation of contaminated soils with metals.  相似文献   

8.
The results esults of a survey of heavy metal contamination at Cleveland area brownfields and public spaces are presented. Soils were analyzed using a 24?h, 1N HCl extraction procedure. The study was conducted to seek brownfield soils that manifest properties of “old” sequestered contamination and to develop a better understanding of the nature and extent of heavy metal burdens at brownfield sites in the Greater Cleveland area. The results indicated that Cleveland brownfields commonly yield soil burdens well above remediation triggers for residential soils and often yield values above industrial remediation triggers. It was also discovered that public areas in the vicinity of brownfields commonly have heavy metal contamination significantly above background levels and occasionally above residential remediation triggers. These results indicate that brownfields redevelopment initiatives should proceed with caution. The appropriate remediation goals or restrictions must be imposed to control urban exposure to heavy metal contamination.  相似文献   

9.
The spatial and vertical distributions of heavy metals were quantitatively determined for organic-rich agricultural soils in the Southwestern Nile Delta. This study aims to undertake an assessment of heavy metals contamination in the soils of Quessna district using the inductively coupled plasma-optical emission spectroscopy, remote sensing, and geographic information system techniques. In this study, 24 soil samples were collected at 12 sites representing the main suburbs in the Quessna district. The concentrations of the studied metals decreased in the order of Zn > Cr > Pb > Cu > Ni > Co. The contamination degree and ecological risk assessment for metals in soil samples were evaluated using the enrichment factor, geoaccumulation index, improved Nemerow's pollution index, Pollution load index, and potential ecological risk index. The spatial and vertical distribution of heavy metals concentrations were affected by soil properties such as clay and organic matter content and scavenger metals (Fe and Mn). The intensive urbanization, industrial activity, and agricultural practices are thought to be the main anthropogenic sources of heavy metals contamination. Further studies especially human health risk assessment are recommended to investigate possible risks for humans from heavy metals in this area.  相似文献   

10.
The Hua-ruea sub-district has long been a major agricultural area of Thailand. Shallow groundwater from farm wells is a main source of drinking water for most locals. This study assessed the human health hazards associated with consuming groundwater contaminated with heavy metals among adults age 15–60 years and the aging, greater than 60 years. Twelve groundwater wells were sampled in the Hua-ruea agricultural area. The results showed adults’ average groundwater consumption was high at 3.6 ± 2.1 L/day/person and for the aging group was 2.6 ± 1.0 L/day/person. The hazard quotients for As, Cu, Pb, and Zn exceeded 1 among both the adult and aging populations. Residents of the Hua-ruea subdistrict may be at risk of developing diseases from consumption of water contaminated with these four metals at seven of the 12 wells. These wells are located in intensely cultivated chili fields. All non-carcinogenic hazards of all heavy metals were higher in adults than for the aging population due to a higher intake rate of water by the former. One well had the highest hazard index, 91.8 and 66.2 for adults and the aging, respectively. This study suggested that local people living in intensively agricultural areas should take precautions before drinking contaminated groundwater.  相似文献   

11.
Mine activity in Portugal had a huge impact on the growth of the regions where it took place, like in the Iberian Pyrite Belt. Nowadays, most of these mines are abandoned, as is the case for the Caveira mine. Soil geochemistry indicates that high contents of Cu, Pb, Zn, As, Cd, and Hg occur in the soils collected near the tailings. Multiple Correspondence Analysis identifies two areas with high concentrations of Pb, As, Hg, Sb, Mo, and Tl. However, the results suggest a different geochemistry for each of the areas. The non-site-specific methods (Hazard Index and GLC guidelines) classify all the areas as contaminated. Metal fractionation in the soil phases is different for the several elements studied. The articulation of the metal fractionation results with the GLC guidelines reduces the area of soil contaminated by Pb, but not by As.  相似文献   

12.
Concentrations of Pb, Zn, Cd, Ni, Cu, Cr, and Mn were determined to assess the impact of automobiles on heavy metal contamination of roadside soil. Soil samples at four polluted sites and a control site were collected at a depth of 0, 2, 5, 10, 15, 20, 30?cm. A comparison of elemental levels between polluted and control sites exhibited exceptionally higher concentrations at the former sites. The Pb levels in polluted sites varied from 70 to 280.5?µgg?1and it rapidly decreased with depth. Similarly, mean concentrations of Zn, Cd, Ni, Cu, Cr, and Mn were significantly higher at polluted sites and followed a decreasing trend with the increase in depth. Correlation coefficients between heavy metals and traffic density were positively significant except for nickel. Profile samples showed that Pb, Zn, Cd, Cu, and Mn were largely concentrated in the top 5?cm confirming airborne contamination. The vertical movement and partitioning of metals, except Ni and Cr, exhibited predominant association with soil pH and organic carbon. The results have been presented using Heavy Metal Index.  相似文献   

13.
In recent years, heavy metal pollution accidents have occurred in many regions of China, and the public has become increasingly concerned about its health. Based on a U.S. Environmental Protection Agency model and using Monte Carlo simulation techniques, this article presents a procedure for health risk assessment of heavy metal pollution. A case study was conducted in the Qixia lead and zinc mining area. Based on the magnitude of heavy metal contamination in the mine factory, vicinal Qixia scenic site and village, the potential health risk calculated for a lifetime of exposure (through ingestion and dermal contact) was determined as the cumulative carcinogenic and non-carcinogenic risk for workers, tourists, and local residents (including children and adults), respectively. The risk assessment indicated that the carcinogenic risk is not significant. However, Pb poses a significant cumulative non-carcinogenic risk, which tends to be serious for workers. Additionally, local children are more vulnerable than adults to the risks associated with heavy metal contamination. Accordingly, risk alleviation and preventive measures should be taken, especially for children and workers.  相似文献   

14.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

15.
In this review, chemical and biological parameters are discussed thatstrongly influence the speciation of heavy metals, their availability tobiological systems and, consequently, the possibilities to usebioremediation as a cleanup tool for heavy metal polluted sites. In orderto assess heavy metal availability, a need exists for rapid, cost-effectivesystems that reliably predict this parameter and, based on this, thefeasibility of using biological remediation techniques for site managementand restoration. Special attention is paid to phytoremediation as anemerging technology for stabilization and remediation of heavy metalpollution. In order to improve phytoremediation of heavy metal pollutedsites, several important points relevant to the process have to beelucidated. These include the speciation and bioavailability of the heavymetals in the soil determined by many chemical and biological parameters,the role of plant-associated soil microorganisms and fungi inphytoremediation, and the plants. Several options are described how plant-associated soil microorganisms canbe used to improve heavy metal phytoremediation.  相似文献   

16.
Adsorption of Cu, Cd, Ni, and Zn in single and multi-metal solutions by agricultural and forest soils was investigated in batch sorption experiments. The results showed significant differences in sorption capacities of the studied soils. The selectivity order was as follows: agricultural soil? top forest soil > bottom forest soil. The adsorption sequence Cu > Zn > Ni > Cd was established for the agricultural and bottom forest soil, while the order for the top forest soil was Cu > Ni > Zn > Cd. The experimental isotherms for the metal sorption were described satisfactorily by the Freundlich and Langmuir models. The competitive adsorption experiment indicated a reduction in the amount of metals adsorbed by the soils from the multi-metal solution compared to the single metal solution. Properties of the soils, such as pH, content of clay and organic matter, exchangeable bases and hydrolytic acidity, showed a significant influence on adsorption capacities of the studied soils.  相似文献   

17.
This study evaluates heavy metal removal associated with phytomass management in a Typic Hapludox after three applications of pig slurry. Like humic acids in pig slurry were characterized through physics and chemical spectroscopy technics. Heavy metal levels were determined in ration that was offered to pigs, anaerobically digested pig slurry, and plant tissues from pig slurry-fertilized black oat (Avena strigosa Schreb.) and ryegrass (Lolium multiflorum Lam.) intercrop. Soil contamination was evaluated by the pseudo-total heavy metal levels in six soil layers and the bioavailable levels in the top soil layer. Results indicate that the ration is the origin of heavy metals in the pig slurry. The approximate levels in the ration were as follows (mg kg?1): Cu 23.9, Zn 92.02, 153.15, Mn 30.98, Ni 0.23, Pb 10.75, Cr 0.34, Co 0.08, and Cd 0.05. The approximate levels of these metals in the pig slurry were as follows (mg kg?1): Cu 71.08, Zn 345.67, Fe 83.02, Mn 81.71, Ni 1.13, Pb 4.35, Co 0.28, and Cd 0.16. Like humic acids contained 55% aliphatic chains, 14% oxygenated aliphatic chains, and 15% carboxyls, demonstrating their high capacity for interaction with heavy metals by forming soluble complexes. Soil contamination was indicated by the accumulation of heavy metals in the six soil layers in relation to the applied pig slurry dose (ranged as follows (mg kg?1): Cu 110 to 150, Zn 50 to 120, Ni 20 to 40, and Pb 12 to 16) and as bioavailable forms (levels ranged as follows (mg kg?1): Cu < 1, Zn 1.0–1.5, Ni 0.1–1.5, and Pb 1.9–6.3). The positive correlation between heavy metal accumulation in the plants and soil bioavailable heavy metal levels and the lowest heavy metal levels under higher intensity of phytomass removal demonstrate the ability of phytomass management to reduce soil contamination.  相似文献   

18.
Soil distribution of heavy metals caused by municipal solid waste (MSW) deposition and its implications for MSW management system in emerging cities was investigated in Abeokuta, Nigeria. Results indicated that the highest concentrations of Cu, Cr, Mn, and Zn were observed at 0-40 cm while Pb, Fe, and Ni accumulated at depths below 40 cm. Soils affected by waste deposits from market and auto-mechanic sites showed high levels of Fe, Cr, Pb, Cu, Mn, and Zn. The accumulation of heavy metals in the soils was probably due to the formation of metal-organo-complexes. Therefore, source separation of MSW with proper management systems is proposed to improve the indiscriminate surface dumping practiced at present, while the use of wastes affected sites for cultivation should be discouraged.  相似文献   

19.
Instances of Soil and Crop Heavy Metal Contamination in China   总被引:1,自引:0,他引:1  
Both general and specific investigations of soil and crop heavy metal contamination were carried out across China. The former was focused mainly on Cd, Hg, As, Pb, and Cr in soils and vegetables in suburbs of four large cities; the latter investigated Cd levels in both soils and rice or wheat in contaminated areas throughout 15 provinces of the country. The results indicated that levels of Cd, Hg, and Pb in soils and some in crops were greater than the Governmental Standards (Chinese government limits for soil and crop heavy metal contents). Soil Cd ranged from 0.46 to 1.04?mg kg?1, on average, in the four cities and was as high as 145?mg kg?1 in soil and 7?mg kg?1 in rice in the wide area of the country. Among different species, tuberous vegetables seemed to accumulate a larger portion of heavy metals than leafy and fruit vegetables, except celery. For both rice and wheat, two staple food crops, the latter seemed to have much higher concentrations of Cd and Pb than the former grown in the same area. Furthermore, the endosperm of both wheat and rice crops had the highest portion of Cd and Cr. Rice endosperm and wheat chaff accumulated the highest Pb, although the concentrations of all three metals were variable in different parts of the grains. For example, 8.3, 6.9, 1.4, and 0.6?mg kg?1 of Pb were found in chaff, cortex, embryo, and endosperm of wheat compared with 0.11, 0.65, 0.71, and 0.19?mg kg?1 in the same parts of rice, respectively. Untreated sewage water irrigation was the major cause of increasing soil and crop metals. Short periods of the sewage water irrigation increased individual metals in soils by 2 to 80% and increased metals in crops by 14 to 209%. Atmospheric deposition, industrial or municipal wastes, sewage sludge improperly used as fertilizers, and metal-containing phosphate fertilizers played an important role as well in some specific areas.  相似文献   

20.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号