首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the concentration of Aluminium (Al), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Zinc (Zn) in the root and aboveground organs of four halophyte species (Salicornia europaea, Suaeda maritima, Salsola soda and Halimione portulacoides), as well as in the soil from maritime and inland saline areas. The aim of our research was to evaluate the capability of some halophyte species to absorb different heavy metals and to detect differentiation of heavy metal accumulation within populations from inland and maritime saline areas. Generally, the plant roots had significantly higher concentrations of metals when compared to stems and leaves. Zinc was the only metal with concentrations significantly higher in the leaves than in the root and stem. Populations from maritime saline areas had higher trace root and stem metal concentrations than populations from inland saline areas. Excepting zinc, populations from inland saline areas had higher heavy metal concentrations in the leaves. The factors that affected metal accumulation by halophytes included the percentage of salt in the soil. We also discuss the potential use of these halophytes in phytoremediation.  相似文献   

2.
The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.  相似文献   

3.
Irrigation with untreated wastewater from several industrial, commercial, and domestic discharges for decades caused accumulation of various heavy metals and metalloids in soils along the Akaki River in Ethiopia. Assessment of environmental threats and the potential phytoremediation of the soils require understanding of the toxic elements’ uptake and distribution in plant parts. Hence, a greenhouse study was performed to examine the phytoavailability and distribution of Cr, Ni, Co, Cu, Zn, Cd, Pb, Hg, Se, V, and As in forage grasses: Oat (Avena sativa), Rhodes grass (Chloris gayana), Setaria (Setaria sphacelata), and the legumes Alfalfa (Medicago sativa) and Desmodium (Desmodium unicinatum). The average contents of Cr, Ni, Co, Cu, Zn, Pb, Hg, Se, and V in the plants were generally higher than the background levels for forage grasses/legumes, and some of these elements were in the phytotoxic range. Root bioconcentration factor (BCF = root to soil concentration ratio) > 1 was observed for Cu (Oat, Rhodes, Desmodium, and Setaria: Fluvisol), Zn (Setaria: Fluvisol), Cd (Rhodes: Fluvisol; Setaria from both soils) and Hg (Oat and Alfalfa: Fluvisol). Alfalfa and Desmodium displayed translocation factor > 1 (TF = shoot to root concentration ratio) for most heavy metals. Most heavy metals/metalloids may pose a health threat to humans and stock via introduction to the food chain. The plant factors (species and plant part), soil factors (soil type, soil fractions, pH, and CEC), and their interactions significantly (p < 0.05) influenced plant heavy metal and metalloid levels. However, the role of plant part and species emerged as the most important on heavy metal uptake, translocation, sequestration, and ultimately transfer to the food chain. Accordingly, the uptake and distribution of heavy metals/metalloids in the plants reflect the potential environmental and health hazards attributable to the use of fodder grasses, legumes, and cultivation of vegetables in soils with polymetallic and metalloid contamination.  相似文献   

4.
The present study was focused on field research to examine the phytoremediation potential of naturally grown Eichhornia crassipes in fly ash (FA) pond. Field results indicate the efficiency of E. crassipes for remediation of heavy metals from FA pond. The bioconcentration factor trend was Cr (3.75) > Cu (2.62) > Cd (1.05), and Cu (1.35) in root and stem, respectively. The survival and abundance growth of E. crassipes in the circumstance of heavy metal enriched FA pond is another highlight of the present research that reveals its toxitolerant characteristics. Thus, this lesson on phytoremediation proved that E. crassipes is a potential accumulator of Cu, Cr, and Cd from FA ponds and is a promising species for FA pond's remediation globally.  相似文献   

5.
选择乐安河—鄱阳湖湿地典型植物群落,采用重要值方法评价各样点植物群落特征并筛选出典型优势植物,通过室内理化测试分析不同生境中优势植物植株及其根区土壤中重金属Cu、Pb、Cd的含量;采用生物富集系数(BCF)方法评价不同优势植物对重金属Cu、Pb、Cd的富集特性。结果表明:研究区湿地植物以草本为主,在各样点共发现124种物种,包括蕨类植物2科2属2种,种子植物40科97属122种,并从中筛选出羊蹄、红蓼、鼠曲草、紫云英、苎麻等5种富集能力较强的优势植物;植物根区土壤中的Cu、Cd含量均超过土壤环境质量三级标准,而且Cu、Cd的最高含量分别为824.03、5.03 mg·kg-1;不同优势植物对Cu、Pb、Cd等3种重金属元素中的1种或2种表现出较强的富集能力,其中优势物种红蓼对Cu具有较强的富集能力,含Cu量最高为148.80 mg·kg-1,另一种优势物种鼠曲草对三种元素的生物富集系数均较高,且对Cd的最高富集含量为15.17 mg·kg-1,对Cd的生物富集系数最高值为19.14,高于其他植物10倍以上,鼠曲草对重金属Cd具有富集植物的基本特征,且对Cu和Cd具有共富集特征并具有较高的耐性,紫云英、羊蹄等对Cd的富集能力也较强。上述5种优势植物种群对鄱阳湖湿地Cu、Pb、Cd等重金属污染物的生态修复具有一定参考价值,可作为鄱阳湖湿地重金属污染修复植物的选择对象。  相似文献   

6.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

7.
Phytoremediation is a new ecological and cost-effective technology applied for cleaning heavy metals and total petroleum hydrocarbon contaminated (TPH-contaminated) soils. This study was conducted to evaluate the potential of milk thistle (Silybum marianum) to phytoremediate cadmium (Cd (II)) from contaminated soils. To this end, the investigators applied a completely randomized design with the factorial arrangement and four replications. The results indicated that all the evaluated parameters of S. Marianum, including shoot and root fresh and dry weight, as well as shoot and root Cd, were significantly influenced by Cd (II) concentration and diesel oil (DO). The Cd-contaminated soil showed minor declining effects on the produced plant biomass, whereas the DO-contaminated soil had more inhibitory effects. Moreover, the soil contaminated with both Cd and DO led to adverse effects on the plant biomass. The shoot and root Cd concentration had an increasing trend in the presence of DO as the bioconcentration factor (BCF) by 1.740 (+90.78%), 1.410 (+36.89%), 2.050 (+31.41%), 1.68 (+32.28%), and 1.371 (+22.41%) compared to the soil without DO at Cd (II) concentrations of 20, 40, 60, 80, and 100 mg/kg, respectively. Biological accumulation coefficient also showed the same trend as the BCF. In all the treatments, the translocation factor was >1. Therefore, it was demonstrated that milk thistle had high potential for transferring Cd from root to shoot and reducing its concentration in the soil. Moreover, the study revealed that milk thistle had high potential for absorbing Cd in the soil contaminated with Cd and DO.  相似文献   

8.
The research was designated to study the ability of plants to bio-accumulate, translocate and remove the heavy metals, lead and cadmium from contaminated soil. The herbal plant ryegrass, Lolium multiflorum was investigated as a bio-accumulator plant for these metals. The translocation of these heavy metals in the herbal plant was compared considering root to shoot transport and redistribution of metals in the root and shoot system. The trace metal contents from root and shoot parts were determined using atomic absorption spectrometer. The results showed that the percent of lead and cadmium transferred to ryegrass plant were averaged as 51.39, and 74.57%, respectively, while those remained in the soil were averaged as 48.61 and 25.43% following 60 days of treatment. The soil-plant transfer index in root and shoot system of ryegrass was found to be 0.32 and 0.20 for lead, and 0.50 and 0.25 for cadmium. These findings indicated that the herbal plant ryegrass, Lolium multiflorum is a good accumulator for cadmium than lead. The soil-plant transfer factor (the conc. of heavy metal in plant to the conc. in soil) indicated that the mechanism of soil remedy using the investigated plant is phytoextraction where the amounts of heavy metals transferred by plant roots into the above ground portions were higher than that remained in the soil. The method offers green technology solution for the contamination problem since it is effective technology with minimal impact on the environment and can be easily used for soil remedy.  相似文献   

9.
A field experiment was conducted to evaluate the effective utilization of tannery sludge for cultivation of clarysage (Salvia sclarea) at CIMAP research farm, Lucknow, India during the year 2012–2013. Six doses (0, 20, 40, 60, 80, 100 tha?1) of processed tannery sludge were tested in randomised block design with four replications. Results revealed that maximum shoot, root, dry matter and oil yield were obtained with application of 80 tha?1of tannery sludge and these were 94, 113 and 61% higher respectively, over control. Accumulation of heavy metals (Cr, Ni, Fe, Pb) were relatively high in shoot portion of the plant than root. Among heavy metals, magnitude of chromium accumulation was higher than nickel, iron and lead in shoot as well as in root. Linalool, linalyl acetate and sclareol content in oil increased by 13,8 and 27% respectively over control, with tannery sludge application at 80 tha?1. Heavy metals such as chromium, cadmium and lead content reduced in postharvest soil when compared to initial status. Results indicated that clarysage (Salvia sclarea) can be grown in soil amended with 80 tha?1sludge and this can be a suitable accumulator of heavy metals for phytoremediation of metal polluted soils.  相似文献   

10.
As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. salicifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium, > P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.  相似文献   

11.
Fungal inoculation and elevated CO2 may mediate plant growth and uptake of heavy metals, but little evidence from Diffusive Gradients in Thin-films (DGT) measurement has been obtained to characterize the process. Lolium mutiforum and Phytolacca americana were grown at ambient and elevated CO2 on naturally Cd and Pb contaminated soils inoculated with and without Trichoderma asperellum strain C3 or Penicillium chrysogenum strain D4, to investigate plant growth, metal uptake, and metal bioavailability responses. Fungal inoculation increased plant biomass and shoot/root Cd and Pb concentrations. Elevated CO2 significantly increased plants biomass, but decreased Cd and Pb concentrations in shoot/root to various extents, leading to a metal dilution phenomenon. Total Cd and Pb uptake by plants, and DGT-measured Cd and Pb concentrations in rhizosphere soils, were higher in all fungal inoculation and elevated CO2 treatments than control treatments, with the combined treatments having more influence than either treatment alone. Metal dilution phenomenon occurred because the increase in DGT-measured bioavailable metal pools in plant rhizosphere due to elevated CO2 was unable to match the increase in requirement for plant uptake of metals due to plant biomass increase.  相似文献   

12.
Extensive use of Pesticides in agriculture and its surface runoff in river water is a major environmental concern. The present study evaluated the phytoremediation potential of Eichornia crassipes, Pistia strateotes and algae (Chaetomorpha sutoria, Sirogonium sticticum and Zygnema sp.) for organochlorine and pyrethroid pesticides. Water and plant samples were extracted by liquid phase and solid phase extraction respectively and analyzed by high-performance liquid chromatography. Eleven treatments (T1–T11) with and without plants were used for phytoremediation of organochlorine and pyrethroid pesticides. During the experiment, P. strateotes, E. crassipes and algae (C. sutoria, S. sticticum and Zygnema sp.) showed the highest removal efficiency with 62 (71% root, 29% shoot), 60 (67% root, 33% shoot), and 58% respectively for organochlorine and 76 (76% root, 24% shoot), 68 (69% root, 31% shoot), and 70% respectively for pyrethroids for the respective aquatic plants. Dissipation rate constant of treatments with plants (T2, T3, T5, T6, T8, and T9) was significantly higher (p < 0.05) as compared to that of treatments without plants (T10 and T11, control) for both organochlorine and pyrethroid. The bioconcentration factor of pyrethroid treatments (T3, T6, and T9) was significantly higher (p < 0.05) as compared to that of organochlorine treatments (T2, T5 and T8). The removal efficiency of E. crassipes, P. strateotes and algae (C. sutoria, S. sticticum and Zygnema sp.) for pyrethroids was significantly higher (p < 0.01) as compared to that of organochlorine.  相似文献   

13.
Heavy metal accumulation in crops and soils from wastewater irrigation poses a significant threat to the human health. A study was carried out to investigate the removal potential of heavy metals (HM) by native plant species, namely Cannabis sativa L., Chenopodium album L., Datura stramonium L., Sonchus asper L., Amaranthus viridus L., Oenothera rosea (LHer), Xanthium stramonium L., Polygonum macalosa L., Nasturtium officinale L. and Conyza canadensis L. growing at the municipal wastewater site in Abbottabad city, Pakistan. The HM concentrations varied among plants depending on the species. Metal concentrations across species varied in the order iron (Fe) > zinc (Zn) > chromium (Cr) > nickel (Ni) > cadmium (Cd). Majority of the species accumulated more HM in roots than shoots. Among species, the concentrations (both in roots and shoots) were in the order C. sativa > C. album > X. stramonium > C. canadensis > A. viridus > N. officinale > P. macalosa > D. stramonium > S. asper > O. rosea. No species was identified as a hyperaccumulator. All species exhibited a translocation factor (TF) less than 1. Species like C. sativa, C. album and X. stramonium gave higher (> 1) biological concentration factor (BCF) and biological accumulation coefficient (BAC) especially for Fe, Cr and Cd than other species. Higher accumulation of heavy metals in these plant species signifies the general application of these species for phytostabilization and phytoextraction of HM from polluted soils.  相似文献   

14.
Batch experiments were designed to characterize a multiple metal resistant bacterium Burkholderia sp. D54 isolated from metal contaminated soils in the Dabaoshan Mine in South China, and a follow-up experiment was conducted to investigate the effects of inoculating the isolate on plant growth and metal uptake by Sedum alfredii Hance grown on soils collected from a heavily contaminated paddy field in Daxing County, Guangxi Zhuang Automounous Region, Southwest China. Our experiments showed that strain D54 produced indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and solubilizing inorganic phosphate and solubilized insoluble metal bearing minerals. Bacterial inoculation significantly enhanced S. alfredii biomass production, and increased both shoot and root Cd concentration, but induced little variation in root/shoot Pb concentration and shoot Zn concentration. Despite this, the total shoot and root uptake of Cd, Pb and Zn in S. alfredii inoculated with D54 increased greatly compared to the non-inoculated controls. It was concluded that inoculation with strain D54 could help S. alfredii grow better on metal contaminated soils, produce more biomass, and remove more metals from soil, which implies improved efficiency of phytoextraction from metal contaminated soil. The knowledge gained from the present experiments constitutes an important advancement in understanding of the interaction between plant growth-promoting bacteria and hyperaccumulators with regard to plant ability to grow and remove the multiple heavy metals from soils.  相似文献   

15.
This study investigated the concurrent accumulation of eight heavy metals by two floating aquatic macrophytes (Lemna minor and Azolla filiculoides) cultivated in ambient media and blended wastewaters in the semiarid regions of Ethiopia. Both species accumulated heavy metals in varying degrees with a significant concentration gradient within the immediate water media. Highest bioconcentration factor (BCF) was determined for Mn and Fe in both plants. Results revealed that L. minor was high phytoaccumulator for Fe, Mn, Zn, and Co but moderate for Cd, Cu, Ni, and Cr. On the other hand, A. filiculoides was a high accumulator for Fe, Mn, Zn, and Cu, but its potency was moderate for Co, Cr, and Ni, but lower for Cd. Both species exhibited significant difference in accumulating Co, Zn, and Mn (p < 0.05). In general, the BCFs for both plants were comparable within the same treatment. In this study, stronger associations between the heavy metal concentrations in the plant tissues and in the grown water media were observed for A. filiculoides.  相似文献   

16.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

17.
Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg?1, respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.  相似文献   

18.
Summary A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and Nicotiana tabacum cells on a disarmed Ti-plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a Mendelian trait and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/ susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100 M CdCl2, whereas control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such as B. napus can be genetically engineered for heavy metal tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.  相似文献   

19.
Phytoremediation potential of Lemna gibba was evaluated for chromium (Cr) and cadmium (Cd) under laboratory conditions for variable metal load of 1?mg/l, 3?mg/l, 5mgl, 7?mg/l and 9?mg/l, respectively, for 7 and 15?days of treatment period. Effects of both metals on structural attributes of L. gibba were also analyzed by Scanning Electron Microscopic (SEM) study. The metal removal percentage by L. gibba for Cr metal was found in the range of 37.3% to 98.6% and for cadmium it was found within the range of 81.6% to 94.6%. Bio concentration factor (BCF) of L .gibba was observed within the range of 37 to 295 for Cr metal and for Cd metal it ranged from 237 to 1144, which shows that the plant is a hyper accumulator for Cd metal and moderate accumulator for Cr metal. Statistical analysis (Two-way ANOVA) was performed on experimental results to confirm the individual effect of metal concentration and treatment period as well as cumulative effect of both factors together on percentage metal removal and on BCF. Research studies indicated that with the progress of treatment period metal removal percentage increases but increasing metal load during experiment negatively co-relates the metal removal percentage and BCF.  相似文献   

20.
The present study assessed Zn, Cr, Cd, and Pb removal efficiency of Colocasia esculenta, Hydrilla verticillata, Phragmitis australis, Typha latifolia, and Spirodella polyrhiza from sewage-mixed industrial effluent. The fresh/dry weight and relative growth rate of each macrophyte decreased with increasing effluent concentration. H. verticillata and C. esculenta exhibited better growth at 50% effluent over control. The maximum Zn, Cd, and Pb accumulation (1008.23, 28.03, and 483.55 mg/kg dry wt., respectively) was recorded in C. esculenta, whereas Cr (114.48 mg/kg dry wt.) in H. verticillata at 100% effluent. Metal accumulation in roots of all plants species was higher (≥50%) initially with increasing effluent concentration and later transferred to shoots. All plants exhibited BCF >1.0 for all heavy metals, highest being for Zn (91.2) and Cd (75.2) in H. verticillata, for Cr (97.9) and Pb (103) in C. esculenta. Except S. polyrhhiza, all other plants exhibited TF <1.0. Maximum removal efficiency of Zn was 82.8% by H. verticillata, whilst that of Cr, Cd, and Pb by C. esculenta at 50% effluent, demonstrating wide applicability of H. verticillata and C. esculenta for treatment of mixed industrial effluent having heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号