首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was carried out to study the effect of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) on Cd phytoextraction and detoxification in ryegrass. Foliar spray of DA-6 significantly enhanced Cd extraction efficiency (P < 0.05), with 1 μM DA-6 the most effective. At the subcellular level, 43–53% of Cd was soluble fraction and 23–46% in cell wall, and 9–25% in organelles. Chemical speciation analysis showed that 52.7–58.5% of Cd was NaCl extractable, 12.1–22.7% ethanol extractable, followed by other fractions. DA-6 alleviated metal toxicity by fixing more Cd in cell wall and decreasing Cd migration in plant. In conclusion, ryegrass tolerates Cd by cell wall compartmentalization along with protein and organic acids combination, and the treatment of 1 μM DA-6 appears to be optimal for enhancing the remediation efficiency of ryegrass for Cd contaminated soil.  相似文献   

2.
This work assessed the ability of Lolium perenne and Medicago sativa for extracting lead (Pb) from particulate printed circuit computer boards (PCB) mixed in sand with the following concentrations: 0.5, 1.0 and 1.5 g of PCB, and including a control treatment without PCB. The PCB were obtained from computers, and grinded in two particle sizes: 0.0594 mm (PCB1) and 0.0706 mm (PCB2). The PCB particle sizes at their corresponding concentrations were applied to L. perenne and M. sativa by using three experimental assays. In assay II, PCB2 affected the biomass production for both plants. For assay III, the PCB1 increased the biomass of M. sativa (236.5%) and L. perenne (142.2%) when applying either 0.5 or 1.0 g, respectively. In regards to phytoextraction, assay I showed the highest Pb-extraction by roots of L. perenne (4.7%) when exposed to 1.5 g of PCB1. At assay I, L. perenne showed a Pb-bioconcentration factor higher than 1.0 when growing at 0.5 g of PCB1, and when HNO3 was used as digestion solution; moreover, in assay III both plants showed a Pb-translocation factor higher than 1.0. Therefore, Lolium perenne and Medicago sativa are able to recover Pb from electronic wastes (PCB).  相似文献   

3.
A simple and efficient regeneration protocol was established for soybean [Glycine max (L.) Merrill]. Cotyledonary node explants from 7-day-old in vitro seedlings were used as explants. The effect of different plant growth regulators [N 6 –benzyladenine (BA), kinetin (KT), thidiazuron (TDZ), gibberellic acid (GA3), zeatin riboside (ZTR), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA)] along with polyamines (Spermidine, spermine, and putrescine) were investigated at different stages of regeneration using direct organogenesis system. Exogenous spermidine (137.69 μM) in shoot induction medium containing optimal BA concentration (2.22 μM) induced maximum number of shoots (39.02 shoots/explant) compared to BA (2.22 μM) alone. Regenerated shoots elongated well in shoot elongation medium containing GA3 (1.45 μM) and spermine (74.13 μM), and developed profuse roots in root induction medium containing putrescine (62.08 μM). Rooted plantlets were successfully hardened and acclimatized with a survival rate of 92 %. The amenability of the standardized protocol using cultivar PK 416 was tested on four more Indian soybean cultivars JS 90–41, Hara soy, Co1, and Co2 of which PK 416 was found to be the best responding cultivar, with a maximum of 96.94 % shoot induction.  相似文献   

4.
The objective of this study was to develop an efficient system for the regeneration of spinach plants (Spinacia oleracea L.) by investigating the factors influencing callus and shoot induction. All plant growth regulator (PGR) combinations tested induced callus with high frequency (73–100 %), and the combination of 5 μM α-naphthaleneacetic acid (NAA), 10 μM 6-benzyladenine (BA) and 0.1 μM gibberellic acid (GA3) had the most significant effect on callus growth in term of weight (120.98 ± 22.56 mg). A high auxin-containing medium induced competent callus for shoot formation, while high cytokinin-containing media enhanced callus growth and made callus incompetent for shoot regeneration. Longer periods of callus induction in a high auxin-containing medium were required to form competent callus and led to a high regeneration capacity. The PGR combination shift from a high auxin to cytokinin ratio (ACR) to a low ACR resulted in highly efficient regeneration. Among the regeneration systems tested, the combination of 10 μM NAA and 0.3 μM GA3 for callus induction for 6 weeks followed by 2 μM NAA and 5 μM BA resulted in the highest plant regeneration frequency (83.33 ± 6.43 %) and the highest number of plantlets per explant (7.93 ± 1.24). Somatic embryos at cotyledonary stage and plantlets were transferred to PGR-free medium to establish whole plants. Regenerated female plants grew well to maturity in the greenhouse (77.17 ± 9.80 %) and produced seeds (175.21 ± 28.01 firm seeds per plant).  相似文献   

5.
Leaching of metals due to enhanced mobility during ethylenediaminetetraacetic acid (EDTA)-assisted phytoextraction has been demonstrated as one of the potential hazards associated with this technology. This study was conducted to determine phytoextraction efficiency of Chenopodium album L. for Pb and EDTA-assisted (1.5, 3, and 9 mmol kg?1) phytoextraction and potential for leaching of Pb. The results demonstrated that BCFshoot (bioconcentration factor) was relatively higher than the BCFroot. Translocation factor in the shoot was higher than the roots. Thus, plant species would be applicable for Pb phytoextraction. EDTA enhanced translocation of Pb from roots to shoots. Lead content in the plant parts was maximum in the shoot and root of 9EDTA and 3EDTA, respectively. However, there was no significant difference between 3EDTA and 9EDTA. Lead concentration in the plant parts increased significantly from vegetative stage into flowering stage. Lead content taken up by the plant was lowest when EDTA was applied in a single dose. Therefore, application of EDTA in several increments rather than a single split reduced the leaching risk. Totally, optimum phytoextraction was observed when 3 mmol kg?1 EDTA was added in triple dosage 60 days after the plant cultivation under triple application mode. The results indicated the plant has the potential for Pb phytoextraction, but it should not be used unless the biomass containing such accumulated metal is removed for disposal. Significant improvement over current ETDA-assisted phytoextraction of Pb may be possible but should be implemented cautiously because of environmental risk.  相似文献   

6.
The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 μM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 μM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg?1) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 μM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg?1 (155.7%). The other IBA concentrations (2.5 and 7.5 μM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg?1 (50%) and 42.5 mg kg?1 (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.  相似文献   

7.
An efficient protocol for micropropagation and in vitro flowering of Trichodesma indicum (Linn) R. Br. was developed using shoot tip explants. The physiological role of cytokinin and its combination with auxins on micropropagation and in vitro flowering was investigated. The highest number of shoots (9.94 ± 0.10) and the maximum average shoot length (5.56 ± 0.35 cm) were recorded on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP) (4.44 μM) and naphthaleneacetic acid (NAA) (2.69 μM). The effect of sucrose concentration on in vitro floral development was studied in plantlets cultured on MS medium supplemented with gibberellic acid (GA3) and BAP. The highest percentage of flowering (93.2%) was obtained on MS medium supplemented with GA3 (1.44 μM), BAP (1.33 μM) and sucrose (30 g l?1). Root formation from the adventitious shoots was easily achieved on MS medium containing indole-3-butyric acid (IBA) (2.46 μM). The regenerated plantlets showed 86% survival rate and were phenotypically normal. The described method can be successfully employed for large-scale multiplication and in vitro flowering of T. indicum.  相似文献   

8.
In order to develop conservation protocols for Campanula incurva, the geographical information systems (GIS) were used to unveil its ecological requirements; this facilitated the selection of substrates and of appropriate temperatures for cultivation and guided propagation experiments and acclimatization. Seed germination was tested under (i) dark, (ii) 16-h photoperiod, (iii) immersion in 400 ppm gibberellic acid (GA3) followed by incubation at dark, and (iv) immersion in 400 ppm GA3 followed by incubation at 16-h photoperiod (all at 21 ± 1°C). Dormancy was not detected. Germination exceeded 85% in 10 days. Shoot tips were established in vitro in Murashige and Skoog (MS) medium with 1 μM 6-benzyladenine (BA) and 0.1 μM indole-3-butyric acid (IBA). The effect of 1–8 μM BA and 1–8 μM kinetin on shoot proliferation was studied. Moreover, 8 μM BA was combined with 0, 1, 5, and 10 μM IBA to investigate effects of cytokinin/auxin. The highest number of microshoots/explant (4.03) was obtained with 8 μM BA. Microshoots were transferred to half strength MS and full strength MS media with 0, 0.5, 1, 5, and 10 μM IBA to evaluate their root induction ability. Half strength MS medium with 5 μM IBA resulted in 100% rooting (16.80 average number of roots/microshoot). Plantlets produced were successfully acclimatized.  相似文献   

9.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

10.
The effects of various combinations of plant growth regulators on regeneration potential from seedling-derived leaf tissues of Brassica oleracea L. var. botrytis were evaluated. Callus was induced from 2-wk-old leaf explants. The explants were incubated on Gamborg’s (MSB5) medium. The maximum frequency of callus induction (85.56%) was recorded on MSB5 medium supplemented with 9.1 μM thidiazuron (TDZ) and 0.5 μM α-naphthaleneacetic acid (NAA). Optimum shoot induction (54.44%) was obtained on MSB5 medium supplemented with 4.5 μM TDZ and 0.5 μM NAA. The maximum number of shoots per explant (5.33) was recorded on MSB5 medium with 4.5 μM TDZ and 0.5 μM NAA, whereas the maximum shoot length (4.86 cm) was recorded for shoots cultured on MSB5 medium supplemented with 4.5 μM TDZ and 5.7 μM gibberellic acid (GA3). However, optimum root induction (71.11%) occurred on half-strength Murashige and Skoog basal medium supplemented with 4.9 μM indole-3 butyric acid (IBA). Studies on the antioxidant activity of superoxide dismutase, ascorbate peroxidase, and peroxidase in seedlings, callus, regenerated shoots, and regenerated plantlets cultured on 4.5 μM TDZ and 0.5 μM NAA medium revealed the roles of these key antioxidative enzymes in callus induction and regeneration. The genetic stability of the regenerated plantlets was assessed using inter simple sequence repeat primers. The monomorphic amplification products confirmed true-to-type in vitro regenerated plants. This in vitro regeneration method can be useful in the large-scale production of genetically uniform plants, for genetic transformation, and conservation of elite germplasm of plant species.  相似文献   

11.
The use of plant growth regulators (PGRs) and biostimulants to enhance phytoextraction is gaining popularity in phytoremediation technology. This study investigated the stimulatory effects of smoke-water (SW), a smoke-derived compound karrikinolide (KAR1) and other known plant growth regulators (PGRs) [gibberellic acid (GA3), kinetin (Kin) and indole-3-butyric acid (IBA)] to enhance the phytoextraction potential of Pennisetum clandestinum. Pennisetum clandestinum seedlings were grown for 10 weeks in vermiculite using Hoagland's nutrient solution and were treated with cadmium (Cd) (2, 5, and 10 mg L?1) and SW, KAR1 and PGRs. KAR1 exhibited positive effects on shoot and root dry weight (140 and 137 mg respectively) at the highest concentration of Cd (10 mg L?1) compared to all the other treatments. KAR1 and SW treatments used in the present study significantly improved the phytoextraction potential of P. clandestinum (602 and 575 mg kg?1 respectively) compared to the other tested PGRs. This is the first report on the use of SW and KAR1 to enhance phytoremediation potential in P. clandestinum. Further studies are needed to elucidate the exact mechanisms of smoke constituents involved in phytoextraction potential of plant species.  相似文献   

12.
Selaginella, an extant genus of primitive vascular plants, has survived over 400 million years of evolution. In vitro morphogenesis in Selaginella microphylla is considered for the first time to establish a well-documented aseptic culture on half- strength Murashige and Skoog’s basal medium with 2ip (4.92–49.21 μM), or Kn (4.65–46.47 μM) or GA3 (2.89–28.90 μM) for shoot multiplication, and with different concentrations of IBA (4.9–49 μm) to initiate root cultures. GA3 was instrumental for shoot multiplication as well as induction of reproductive structures in each and every leaf axil. On the other hand, it is observed that IBA alone in S. microphylla can act as signal molecules for induction of enormous numbers of root masses from a few existing roots. An interesting pattern of re-differentiation has also been observed where apical portions of large numbers of roots were converted to green shoot apical meristems. Further differentiation produced tiny green shoots. Distinct bipolarity was noted in shoots when they were isolated from root masses and appeared as embryo-like structures. Chromosome analysis from in vitro sporophytic plants revealed 2n = 16 chromosomes, indicating chromosomal stability. The interesting in vitro pattern of morphogenesis obtained in S. microphylla may provide new insights into totipotency of plants.  相似文献   

13.
Abstract

An efficient in vitro propagation protocol for Zanthoxylum armatum DC has been developed via indirect organogenesis using aseptic leaf explants. The explants were soaked for different time duration (12, 24 or 36?h) in liquid woody plant medium (WPM) supplemented with various concentrations (15.0, 25.0 or 50.0?μM) of thidiazuron (TDZ). The pre-exposed explants transferred for callus induction onto WPM supplemented with different concentrations of TDZ (2.0, 4.0, 6.0, 8.0 and 10.0?μM) either alone or in combination with varied concentrations (0.5, 1 and 1.5?μM) of naphthaleneacetic acid (NAA). Of the tested concentrations and combinations, best response for pretreated (15?μM TDZ for 24?h) explants was achieved on WPM augmented with 6.0?μM TDZ and 0.5?μM NAA after 8?weeks of incubation. For shoot induction, the callus clumps were excised into small pieces (~0.5?g) and were transferred onto WPM fortified with different concentrations (2.0–9.0?μM) of benzylaminopurine (BA), indole-3-acetic acid (IAA, 1.0?μM) and gibberellic acid (GA3, 0.5–3.0?μM). Maximum shoot number (10.4?±?0.74) and average shoot length (4.75?±?0.71?cm) were observed in WPM enriched with 2.0?μM BAP, 1.0?μM IAA and 1.5?μM GA3 after 8?weeks of incubation. The developed shoots (4?cm) were excised, pulse-treated for 24?h in half-strength WPM containing indole-3-butyric acid (IBA, 50.0?μM) prior to their transfer on hormone-free MS medium, where 100% rooting was achieved. The regenerated plants were implanted in soil-filled poly bags, acclimatized properly and subsequently placed under sunlight with 80% survival rate after 60?days recorded. This is the first report for propagation of Z. armatum via callus phase with high rate of shoot proliferation and can be effectively utilized for generating sufficient planting material in promoting its re-cultivation and conservation programme.  相似文献   

14.
Metal-contaminated soils constitute a serious environmental problem with adverse consequences for human health. This study was conducted to determine phytoextraction efficiency of Echinochloa crus galii for Pb and Cr and the EDTA-assisted (0. 2.5, 5, 10 mmol kg?1) phytoextraction and the potential for leaching of the metals during the phytoextraction process. The results revealed that the bioconcentration factors of roots of the plant were relatively higher than the bioconcentration factors of the shoot. Thus, the plant species of E. crus galii would be applicable for Pb and Cr phytostabilization. Addition of EDTA had virtually a significant effect on uptake of the metals by the plant and elevated Pb and Cr concentrations in plant organs as compared with the control. Optimum phytoextraction was observed when 5 mmol kg?1 EDTA was added in a single dosage 60 days after the plant cultivation and consequently soil Pb and Cr concentration decreased with the passage of time.  相似文献   

15.
In order to establish a highly efficient and sustainable regeneration system, we systematically researched the key factors affecting direct shoot regeneration from Jatropha curcas leaves that were collected from Hainan (HN1-1), Lijiang (LJ3-1), and Yuxi (YX2-12) provinces in China. The L9(34) orthogonal test of thidiazuron (TDZ), kinetin (Kn), and gibberellic acid (GA3) were studied, and the explant type, growth age, and cultivar of leaves were subsequently investigated. Simultaneously, the combinations of plant growth regulators (PGRs) promoting shoot bud proliferation, elongation, and root establishment were examined. The results showed that the best medium for shoot bud induction was Murashige and Skoog (MS) medium supplemented with 1.0 mg/L TDZ, 0.5 mg/L Kn, and 0.5 mg/L GA3. TDZ was the key PGR, while Kn and GA3 played an important role in shoot bud elongation and the number of shoots per leaf disk, respectively. The induced shoot buds proliferated and readily elongated in MS medium with 0.3 mg/L 6-benzylaminopurine and 0.01 mg/L indole-3-butyric acid (IBA) and established roots in half-strength MS medium supplemented with 2.0 mg/L IBA. Using the previously described methods, the third to fifth leaves were found to be the best explant source for shoot bud induction, with a high induction rate, large shoot numbers per disk, excellent proliferation, and consistent rooting. With the use of this regeneration system, the shoot bud induction rate increased from the reported rate of 53.5% to more than 90% using different explants and cultivars, and the shoot number per leaf disk (shoot length?≥?0.5 cm) increased from 1.6 to 3.5. Thus, this optimized regeneration system will effectively promote the propagation and genetic transformation of J. curcas.  相似文献   

16.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature petiole explants of West Indian gherkin (Cucumis anguria L.). Calluses were induced from immature petiole explants excised on 7-day-old in vitro seedlings and mature petiole explants of 40-day-old in vivo plants. The maximum frequency of immature petiole explants (98.0 %) and mature petiole (91.5 %) produced green, compact organogenic callus in Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l?1 sucrose, 8.0 g l?1 agar and 4.0 μM naphthalene acetic acid (NAA) with 2.0 μM benzyl amino purine (BAP) after two successive subculture at 11 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MSB5 medium supplemented with 3.0 μM TDZ, 1.0 μM NAA and 0.05 mM L-glutamine with shoot induction frequency of immature petiole 45 shoots and mature petiole 40 shoots per explant. The shoots were excised from callus and elongated in MSB5 medium fortified with 3.0 μM gibberellic acid (GA3). Then elongated shoots were rooted in half strength MSB5 medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Plantlets with well-developed shoot and root systems were successfully acclimatized (95 %) in winter season and exhibited normal morphology and growth characteristics. The survival percentage differed with seasonal variations.  相似文献   

17.
An efficient protocol was developed for rapid clonal propagation of the important medicinal plant, Centella asiatica (L.) Urban, using shoot tip culture. High frequency bud break (88 %) and multiple shoot formation (16.8 shoots/shoot tip) were induced from a shoot tip segment, which was cultured on MS medium supplemented with 6‐benzylaminopurine (BAP) (17.76 μM) and gibberillic acid (GA3) (1.44 μM). Half‐strength Murashige and Skoog (MS) medium supplemented with naphthalen acetic acid (NAA) (10.74 μM) induced the maximum (27.66) number of roots. Plantlets with 3–4 fully expanded leaves and well‐developed roots were successfully transferred to potted soil which exhibited a 95 % survival. The protocol enables the harvest of more than 25,000 plantlets within 160 days starting from a single shoot tip explant.  相似文献   

18.
Phytoextraction with somaclonal variants of tobacco and sunflower mutant lines (non-GMs) with enhanced metal uptake and tolerance can be a sustainable alternative to conventional destructive decontamination methods, especially for stripping bioavailable zinc excess in topsoil. The overall results of a 5-year time series experiment at field scale in north-eastern Switzerland confirm that the labile Zn pool in soil can be lowered by 45–70%, whereas subplots without phytoextraction treatment maintained labile Zn concentrations. In 2011, the phytoextraction experiment site was enlarged by a factor of 3, and the labile 0.1 M NaNO3 extractable Zn concentration in the soil was reduced up to 58% one period after harvest. A Mass Balance Analysis confirmed soil Zn decontamination in line with plant Zn uptake. The plants partially take Zn from the non-labile pool of the total. The sustainability of Zn phytoextraction in subplots that no longer exceed the Swiss trigger value is now assessed over time. In contrary to the phytoextraction of total soil Zn which needs a long cleaning up time, the bioavailable Zn stripping is feasible within a few years period.  相似文献   

19.
In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5, 10, 15, 20, 25, 30, 40, 50, 100 μM Cd for 21days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level ≤50 μM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with ≤40 μM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 μM Cd was as high as 237.9 mg kg–1, which was higher than 100 mg kg–1, normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.  相似文献   

20.
The first protocol for in vitro plant regeneration from different explants of Bituminaria bituminosa, a pasture and medicinal species, has been established. Three explant types (petiole, leaflet and petiole-leaflet attachment “PLA”) cultured on media with different combinations of benzylaminopurine (BA; 5.0, 10.0 or 20.0 μM) and naphthalene acetic acid (NAA) or indole acetic acid (IAA; 0.5 or 5.0 μM) were tested for calli induction, and with 5 μM BA + 0.5 μM NAA or IAA for shoot development. The average number of shoots (≥5 mm) per callus depended on the explant type and the calli induction medium. The highest average number of shoots per callus was achieved by culturing leaflet and PLA explants on 5 μM IAA + 10 μM BA for calli induction and on 0.5 μM IAA + 5 μM BA for shoot development, and by culturing petiole explants on 0.5 μM NAA + 10 μM BA followed by a second culture on 0.5 μM NAA + 5 μM BA. The highest frequency of shoot rooting was achieved with 10.0 μM NAA and 1.0 μM gibberellic acid (GA3). Rooted plants were acclimatised in a culture chamber, reaching 96 % survival. Acclimatised plants were transferred to a greenhouse and finally to the field, reaching 100 % survival. The furanocoumarin (FC) accumulation was evaluated in organogenic calli, in vitro shoots, ex vitro plants in the greenhouse and in ex vitro plants in the field (after 1 and 4 months of acclimatisation). The content of FCs depended on the plant material evaluated, being higher in ex vitro plants in the field (up to 9,824 μg g?1 DW total FC) and lowest in organogenic calli (up to 50 μg g?1 DW total FC). This effect may be due to cell organization, longer exposure to environmental factors and the developmental stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号