首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangrove sediment had high natural attenuation potential with more than 50% of total PAHs being removed within 15 days. The efficiency in degrading PAHs varied with the declining order of phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr). The Most Probable Number (MPN) of PAH-degrading bacteria in the PAH-contaminated slurries was 2 to 4 orders of magnitude higher than that in the non-contaminated mangrove slurries. The biodegradation ability of the indigenous microbial community in mangrove sediment slurry was significantly increased after exposure to polycyclic aromatic hydrocarbons. Such enhancement effect was dependent on the level and time of exposure, as well as the types of PAH compounds. The lowest contamination level of 3 mg kg?1 was effective in promoting the degradation of Phe and Fla after seven days, but the enhancement effect for Pyr degradation was only found in the slurries exposed to contamination levels of 9 mg kg?1 for 30 days, suggesting a threshold concentration of PAHs to stimulate growth and activity of pyrene-degrading bacteria. The contamination level higher than the threshold concentration did not lead to more degradation. The present study provides insights into the natural attenuation of PAH-contaminated mangrove sediments.  相似文献   

2.
长江口南支表层沉积物中多环芳烃分布特征及生态风险   总被引:4,自引:0,他引:4  
2008年5月和8月先后2次采集长江口南支表层沉积物样品,采用高效液相色谱进行多环芳烃测定,研究其分布、来源与生态风险。结果表明:长江口南支表层沉积物中PAHs总量在8.9~312.2ng.g-1;PAHs组成以芘、菲、苯并[b]荧蒽、苯并[a]蒽、苯并[a]芘为主,各站芘的含量均最高,本研究PAHs总含量与长江口、黄河口和鸭绿江口近期的调查数据相近,但明显低于珠江口和闽江口数据,以及长江口潮滩沉积物中PAHs数据;PAHs环数组成以中、高环为主,表明长江口南支PAHs主要来源于相对高温条件下不完全燃烧过程。采用平均效应中值商法评价长江口南支PAHs生态风险结果表明,调查区域PAHs产生生态风险的概率较小(<10%)。  相似文献   

3.
There are many PAH-degrading bacteria in mangrove sediments and in order to explore their degradation potential, surface sediment samples were collected from a mangrove area in Fugong, Longhai, Fujian Province of China. A total of 53 strains of PAH-degrading bacteria were isolated from the mangrove sediments, consisting of 14 strains of phenanthrene (Phe), 13 strains of pyrene (Pyr), 13 strains of benzo[a]pyrene (Bap) and 13 strains of mixed PAH (Phe + Pyr + Bap)-degrading bacteria. All of the individual colonies were identified by 16S rDNA sequencing. Based on the information of bacterial PCR-DGGE profiles obtained during enrichment batch culture, Phe, Pyr, Bap and mixed PAH-degrading consortia consisted of F1, F2, F3, F4 and F15 strains, B1, B3, B6, B7 and B13 strains, P1, P2, P3, P5 and P7 strains, M1, M2, M4, M12 and M13 strains, respectively. In addition, the degradation ability of these consortia was also determined. The results showed that both Phe and mixed PAH-degrading consortia had the highest ability to degrade the Phe in a liquid medium, with more than 91% being degraded in 3 days. But the biodegradation percentages of Pyr by Pyr-degrading consortium and Bap by Bap-degrading consortium were relatively lower than that of the Phe-degrading consortium. These results suggested that a higher degradation of PAHs depended on both the bacterial consortium present and the type of PAH compound. Moreover, using the bacterial community structure analysis method, where the consortia consist of different PAH-degrading bacteria, the information from the PCR-DGGE profiles could be used in the bioremediation of PAHs in the future.  相似文献   

4.
In this research, ecological risks for eight individual polycyclic aromatic hydrocarbons (PAHs) and ∑PAH8 in surface sediments from middle and lower reaches of Yellow River are evaluated using overlapping areas of probability density curves and margin of safety (MOS), based on the toxicity data and the exposure concentrations of PAHs in sediments collected from 23 sites. In the overlapping areas of probability density curves, the risk of Ant and Pyr are the highest, then the risk level is in the order of Flua > Nap > Phe > BaP > Flu > Ace. The values of MOS10 present that Pyr (4.62 × 10?4), Ant (5.60 × 10?3), and Flua (6.4 × 10?3) have a significantly high ecological risk level, while Nap and Phe have middle-level ecological risk. As for Ace, BaP, and Flu, they pose limited risk to the ecological system with MOS10 greater than 1.0. The ∑PAH8 (2.66 × 10?5) is a higher risk level than that of any individual PAHs, where the probabilities of ∑PAH8 in excess of the 10th percentile of the toxicity data were 86%.  相似文献   

5.
Phenanthrene (Phe) and pyrene (Pyr) are two typical polycyclic aromatic hydrocarbons (PAHs) found in contaminated soil. This study investigated physiological and biochemical responses of rice (Oryza sativa L.) to PAH stress after they were planted in soils contaminated with Phe and Pyr, in the presence or absence of a PAH-degrading bacteria (Acinetobacteria sp.). A number of parameters including biomass and water, chlorophyll and chlorophyll a/b ratio, electrolyte leakage, activities of superoxide dismutase (SOD) and peroxidase, and soluble carbohydrate and soluble protein contents were monitored. Results show that rice plants have good resistance and tolerance to lower levels of PAHs stress, while adding high levels of PAHs to soils resulted in adverse effects on rice plants such as a reduction in biomass and damage to photosynthetic function. Water content and SOD activities were the most sensitive indicators of PAH stress among the observed parameters. Inoculation with PAH-degrading bacteria promoted growth and photosynthesis of rice.  相似文献   

6.
Although reservoirs in China are of great significance, very few studies on risk assessment have been reported for reservoirs. This study investigated distribution characteristics, cancer and ecological risks, and source diagnosis of 16 priority polycyclic aromatic hydrocarbons (PAHs) in sediments from Shitou Koumen Reservoir in Jilin Province, China. A total of 12 sediment samples were collected from the reservoir in August (wet season) 2014. Total PAH concentrations in sediment samples ranged from 1294.51 ng/g to 2755.35 ng/g with a mean concentration of 1757.54 ng/g. For individual PAHs, average concentration of Nap was the highest, 800.56 ng/g, while Acy, Fla, BkF, and DahA were undetected in sediment samples. Light PAHs (2–3 rings) accounting for 74.21% was a dominant PAH compositional pattern. Pearson correlation analysis was carried out; results showed that total PAHs was strongly correlated with the highly enriched sedimentary PAHs, and pH was a major factor in controlling PAH distribution. Lifetime cancer risk was employed to assess cancer risk; results indicated that the fish-culturing area was exposed to cancer risk. The molecular diagnostic ratios of isomeric PAHs were applied to identify possible PAH sources; primary PAH sources were identified as oil-related activities, burning agricultural wastes, vehicular emissions, and industrial discharges.  相似文献   

7.
土壤和沉积物中黑碳的环境行为及效应研究进展   总被引:4,自引:0,他引:4  
汪青 《生态学报》2012,32(1):293-310
土壤和沉积物是全球黑碳排放的主要归宿,土壤和沉积物中黑碳具有复杂的环境行为和环境效应。分析了黑碳的概念,指出应以环境意义为出发点去理解黑碳概念的丰富内涵;描述了黑碳形成过程及其对黑碳理化性质的影响,以及基于此的黑碳分类;总结了黑碳来源辨析的若干种常用方法;讨论了黑碳在土壤/沉积物与其他环境介质之间的迁移循环过程,以及在土壤和沉积物内部的迁移行为;探讨了土壤和沉积物中黑碳的降解行为与稳定性,及其与地-气碳氮温室气体通量、土壤稳定碳库的关系,以及在土壤碳循环模型中的作用;综述了土壤和沉积物中黑碳对有机物、重金属和营养盐的吸附行为及主要机制;提出了今后研究的主要方向,以供相关研究者参考。  相似文献   

8.
An ombrotrophic peat core was collected in 2005 from Etang de la Gruère, Jura Mountains, Switzerland. The concentrations of nine among the U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) (i.e., acenaphthene, phenanthrene, fluorene, pyrene, fluoranthene, benzo[jbk]fluoranthene, benzo[a]pyrene, benzo[ghi]perylene, and indeno[1,2,3-cd]pyrene) were determined in both bulk peat and corresponding humic acids (HA) samples by gas chromatography equipped with a mass spectrometry detector (GC-MS). The maximum PAHs concentrations in peat (around 1,250 μg Σ PAHs kg?1 dry matter) were found at 28–30 cm of depth, which correspond to ca. 1920–1930, when coal inputs to Switzerland reached their maximum level. Amongst the nine PAHs analyzed in the peat samples, pyrene (Pyr) was the predominant species, accounting for ca. 20–100% of the total PAHs throughout the profile. In the HA fraction, that represents 24.7% (average value) of the bulk peat, only phenanthrene (Phe), and sporadically Pyr and fluoranthene (Fth), were detected. In particular, HA showed Phe concentrations that were ten–150 times higher than corresponding bulk peat samples, thus suggesting its preservation against biodegradation due to the incorporation into HA molecules.  相似文献   

9.
The contamination and toxicity levels of sediments in Kaohsiung Harbor, Taiwan, were evaluated using different sediment quality guidelines (SQGs). Twenty dredged sediment samples were collected from various locations in the harbor. Distribution of polycyclic aromatic hydrocarbons (PAHs), heavy metals, nutrients, and total organic carbons in the sediment samples were investigated. Results from the sediment analyses show that the sediments contained significant amounts of organics, nutrients, metals, and PAHs. Based on the analyses using the SQGs, sediments dredged from Kaohsiung Harbor were moderately contaminated and most samples have a low and medium-low probability of toxicity pollution. Results show that industrial activities and urban sewage effluents are the major sources of contamination in the harbor sediments.  相似文献   

10.
Bioirrigation of marine sediments by benthic infauna has the potential to increase both the rate and depth of bacterial mineralization of polycyclic aromatic hydrocarbons (PAHs) by recirculating oxygenated bottom water into sediment burrows. Rates of heterotrophic bacterial production and mineralization of PAHs (naphthalene, phenanthrene, and fluoranthene) were measured in sections of sediment cores sampled from stations in San Diego Bay. Data suggest that rates of PAH biodegradation and bacterial heterotrophy were influenced by bioirrigation by benthic infauna. PAH mineralization and heterotrophic production were higher in core sections where sulfide was not detected relative to core sections containing sulfide. Depth-integrated capacity of the upper 17 cm of sediment to mineralize PAHs was 4 to 10 times higher at the station with bioirrigation coefficients that increased with depth. Remedial dredging of sediments to remove contaminant mass (and presumable lower ecological risk) will also remove benthic infauna. Removal of infauna and the subsequent lowering of bioirrigation in surface sediments would be expected to lower the capacity of intrinsic PAH bioremediation. This could cause local increases in ambient PAH concentration and consequently increase the ecological risk at the site and potentially degrade the health of the ecosystem by removing a sink for PAHs.  相似文献   

11.
Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 microg/kg dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[a]pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 microg PAH/kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.  相似文献   

12.
Biodegradation of pyrene in sand,silt and clay fractions of sediment   总被引:2,自引:0,他引:2  
Microbial degradation is the dominant pathway for natural attenuation of PAHs in environmental compartments such as sediments, which in turn depends on the bioavailability of PAHs. The bioavailability of PAHs has seldom been studied at the sediment particle size scale. We evaluated biodegradation of pyrene by Mycobacterium vanbaalenii PYR-1 as a function of sediment particle sizes, and investigated the relationship between the rate of degradation on sand, silt and clay particles with their individual desorption kinetics measured with the Tenax extraction method. Regression analysis showed that the total organic carbon (TOC), black carbon (BC), and specific surface area (SSA) of the specific particle size fractions, instead of the particle size scale itself, were closely related (P < 0.01) with the mineralization rate. While the fraction in the rapid desorption pool (F rapid) ranged from 0.11 to 0.38 for the whole sediments and different size groups, the fractions mineralized after 336-h incubation (0.52 to 0.72) greatly surpassed the F rapid values, suggesting utilization of pyrene in the slow desorption pool (F slow). A biodegradation model was modified by imbedding a two-phase desorption relationship describing sequential Tenax extractions. Model analysis showed that pyrene sorbed on silt and clay aggregates was directly utilized by the degrading bacteria. The enhanced bioavailability may be attributed to the higher chemical concentration, higher TOC or larger SSA in the silt and clay fractions, which appeared to overcome the reduced bioavailability of pyrene due to sorption, making pyrene on the silt and clay particles readily available to degrading microbes. This conjecture merits further investigation.  相似文献   

13.
The widespread contamination of aquatic sediments by polycyclic aromatic hydrocarbons (PAHs) has created a need for cost-effective remediation processes. Many common PAHs are biodegradable, leading to studies investigating the potential of sediment bioremediation. This article reviews several factors that currently complicate the implementation of sediment bioremediation processes: the effect of complex mixtures of contaminants on the rate and extent of degradation observed, the bioavailability of PAHs in sorbed- and nonaqueous-phase, and methods being evaluated to enhance degradation/availability (surfactant-enhanced solubility, nutrient addition, and bioaugmentation). Received 13 November 1995/ Accepted in revised form 23 July 1996  相似文献   

14.
This study was conducted to examine the application of Equilibrium Partitioning Sediment Benchmarks (ESBs) for assessing the toxicity of polycyclic aromatic hydrocarbons (PAHs) in sediments at former manufactured gas plant (MGP) and coke sites. Samples of freshwater sediment from four MGP and coke sites in the U.S. Northeast and Midwest were analyzed for 34 individual PAHs, total organic carbon, “black” carbon (potentially composed of pitch, soot, and other forms of pyrogenic carbon), and sediment toxicity (28-day Hyalella azteca toxicity test). The sum of the Toxic Units in each sample was calculated from a one-phase model that accounts for sorption of PAHs to total sediment organic carbon, and a two-phase model that accounts for sorption to black carbon as well as to natural organic carbon. Although both the one-phase and two-phase models accurately predicted concentrations of PAHs that were not toxic to aquatic invertebrates, the two-phase model was more often in agreement with results of sediment toxicity tests. While the bioavailability and toxicity of PAHs may vary at other sites, the two-phase model correctly predicted that sediments from these sites with concentrations of total PAHs as high as 52 mg/kg were not toxic to invertebrates.  相似文献   

15.
More than one thousand samples were collected and analyzed to evaluate the potential impact of Motiva's oil refinery effluent on the receiving water, sediment, and biota of the Delaware River. The data collected from these samples were used with advanced chemical fingerprinting of polycyclic aromatic hydrocarbons (PAHs) in Motiva's oil refinery effluent to differentiate Motiva-related PAHs in sediment and biota from other sources. The PAHs released from the refinery between 1999 and 2002 were dominated by petrogenic 4-ring PAHs. Specifically, the refinery signature exhibited relatively high levels of fluoranthenes/pyrenes with two (FP2) and three (FP3) alkyl groups and benz(a)anthracene/chrysenes with two (BC2), three (BC3), and four (BC4) alkyl groups. This PAH signature, attributed to accelerated degradation of low molecular weight PAHs in the Motiva wastewater treatment plant, exhibited little variability over time relative to the background patterns in the Delaware River. This distinctive feature of the Motiva effluent allowed the identification of this source in other samples. Water and sediment samples identified a range of PAH characteristics associated with the Delaware River urban background signature. These characteristics included varying levels of 2- to 3-ring PAHs (likely from weathered automotive fuel, marine fuel, or bilge tank discharges), pyrogenic 4- to 6-ring PAHs (from partially combusted organic material like soot), and perylene (diagenetic product of terrestrial plant decomposition). The Motiva hydrocarbon signature was only evident at moderate to low levels in selected near-field sampling stations for sediment, bivalves, and effluent/nearfield water. PAHs in the river sediments beyond the near-field area were consistently associated with samples containing the Delaware River urban background signature, and exhibited little to no effect from the Refinery.  相似文献   

16.
This study was designed to determine the degree of adsorption of enteric viruses to marine sediment and factors controlling this association. Adsorption and elution characteristics of several enteroviruses and one rotavirus to estuarine sediments were studied under varying conditions of pH, salinity, and presence of soluble organics. Greater than 99% of the added poliovirus type 1 (LSc), coxsackievirus type B3 (Nancy), echovirus type 7 (Wallace), and rotavirus (SA-11) adsorbed to sediment. Echovirus 1 (Farouk) and a recent isolate typed as coxsackievirus B4 adsorbed significantly less than poliovirus 1 under similar conditions of varying salinity and pH. The presence of soluble organic matter, in the form of secondary sewage effluent or humic acid, did not affect these patterns of adsorption. Only echovirus 1 (Farouk) desorbed when the pH or salinity was altered and then only to a small extent. Three recent isolates of echovirus 1 and echovirus 29 (strain JV-10) also demonstrated varying amounts of adsorption to sediment. These data indicate that enteric viruses can become readily associated with sediment in the estuarine environment and that this association may play a major role in their hydrotransportation and survival.  相似文献   

17.
Mangrove sediment is susceptible to anthropogenic pollutants, including polycyclic aromatic hydrocarbons (PAHs). However, the effects of PAHs on the bacterial diversity in mangrove sediment have been rarely studied. In the present study, the effects of three types of PAHs (Naphthalene, Fluorene, and Pyrene) at three doses on sediment microbial populations were investigated by using denaturing gradient gel electrophoresis (DGGE). After 7 and 24 days of incubation of the three types of PAHs, markedly different patterns were observed in the bacterial communities. Overall, the diversity of bacterial community was suppressed before 7 days but was promoted after 24 days. Multidimensional scaling analysis suggested that the composition of bacterial communities after 7 days was distinctly distant from that after 24 days. Also despite a slight shift of bacterial abundance, the bacterial communities were relatively steady in these sediments after exposure to PAHs. In addition, DGGE suggested that the applications of three PAHs (especially PYR) had considerable effects on bacterial communities. For phylogenetic analysis, bacteria species belonging to Proteobacteria (α-, β-, and γ-), Actinobacteria, Chloroflexi, Bacteroidetes, and Planctomycetes were changed dramatically after treatment with PAHs. These results suggest that PAHs play key roles in the change of bacterial community, which may be important for understanding the relationship between PAHs and sediment microbial ecology.  相似文献   

18.
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both.  相似文献   

19.
In view of the fact that there are presently no cost-effective in situ treatment technologies for contaminated sediments, a 60-week-long phytoremediation feasibility study was conducted in seawater-supplied outdoor ponds to determine whether eelgrass (Zostera marina) is capable of removing polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) from submerged marine sediments. It was determined that all PAHs and PCBs, independent of the number of aromatic rings and degree of chlorination, respectively, were removed to a much larger extent in planted sediments compared to unplanted controls. After 60 weeks of treatment, the concentration of total PAHs decreased by 73% in planted sediments but only 25% in unplanted controls. Similarly, total PCBs declined by 60% in the presence of plants while none were removed in the unplanted sediment. Overall, the apparent PAH and PCB biodegradation was greatest in the sediment layer that contained most of the eelgrass roots. Abiotic desorption tests conducted at week 32 confirmed that the phytoremediation process was not controlled by mass-transfer or bioavailability limitations since all PAHs and PCBs desorbed rapidly and to a large extent from the sediment. PAHs were detected in both roots and shoots, with root and shoot bioaccumulation factors for total PAHs amounting to approximately 3 and 1, respectively, after 60 weeks of phytoremediation treatment. Similarly, the root bioaccumulation factor for total PCBs was around 4, while no PCBs were detected in the eelgrass leaves at the end of the experiment. The total mass fraction of PAHs and PCBs absorbed and translocated by plant biomass during the 60-week period was insignificant, amounting to less than 0.5% of the total mass of PAHs and PCBs which was initially present in the sediment. Finally, the number of total heterotrophic bacteria and hydrocarbon degraders was slightly but not statistically significantly greater in planted sediments than in unplanted controls. After ruling out contaminant loss to the water column or absorption and transformation within plant cells, it is most likely that the presence of eelgrass stimulated the microbial biodegradation of PAHs and PCBs in the rhizosphere by releasing root exudates, plant enzymes, or even oxygen. Additional research is needed to further elucidate these potential phytoremediation mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号