首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工业大麻对重金属污染土壤的治理研究进展   总被引:2,自引:0,他引:2  
梁淑敏  许艳萍  陈裕  杨明  郭鸿彦 《生态学报》2013,33(5):1347-1356
由于工业、农业、废水处理、建筑和采矿等一系列人为活动造成土壤的污染程度日益严重,致使土壤不能用于粮食等作物生产.如何深入治理重金属污染土壤已成为当今研究的热点.由于传统的治理重金属污染技术非常昂贵,并存在二次污染的风险,促使研究者寻求新的治理技术.而植物修复技术以其价廉、清洁、不破坏环境、不会造成二次污染等特性逐步引起了学术界和政府部门的广泛重视.近年来,工业大麻以其优良的修复特性和利用价值已成为修复重金属污染土壤的候选植物之一.在此重点论述了重金属对工业大麻的影响及其在大麻不同部位的分布;工业大麻对重金属的吸收能力以及工业大麻对重金属污染土壤修复的优良特性,最后对工业大麻修复重金属污染土壤技术存在的不足等进行归纳总结,以便为工业大麻对重金属污染治理研究及耐重金属或超富集工业大麻品种的选育和栽培技术研究提供指导.  相似文献   

2.
Phytoremediation is the use of plants for the removal of pollutants from contaminated soil or water. Phytoremediation is an environmentally friendly and cost-effective alternative to current remediation technologies. This review article outlines general aspects of phytoremediation, along with discussions about its advantages and limitations. It further reviews various phytoremediation processes in detail: phytoextraction, rhizofiltration, phytostabilization, phytodegradation, and phytovolatilization. Unlike previous review articles available in various journals, this paper presents a more comprehensive view of this issue, and deals with a much wider range of its applications to environmental pollution control. These include the treatment of wastewaters, removal of heavy metals and metalloids (e.g. lead and arsenic), phytoremediation of organic pollutants, such as 2,4,6-trinitrotoluene (TNT) and polychlorinated biphenyls (PCBs), and cleanup of soil and water contaminated with radionuclides, such as cesium (137Cs) and strontium (90Sr). This paper also describes recent developments of transgenic plants for improving phytoremediation. Along the way, the present status of phytoremediation research in Korea is briefly introduced. Finally, the article concludes with suggestions for future research.  相似文献   

3.
重金属污染的转基因植物修复——原理与应用   总被引:5,自引:0,他引:5  
污染环境的植物修复技术具有成本低、不造成二次污染等优点。从自然界中寻找用于污染环境修复的超富积植物不仅难度大 ,而且受生物量、生长周期以及地理环境等因素的限制。近几年迅速发展起来的通过转基因植物进行污染环境的修复技术显示了广阔的应用前景。外源基因在植物的高效表达可以提高植物吸收、运输、降解污染物的能力以及修复的效率 ,并可以作为研究不同污染物修复机理的实验系统。以转基因植物修复几种主要的重金属污染为例 ,介绍了转基因植物修复的原理、现状及存在问题 ,并探讨了提高转基因植物修复效率的一些方法 。  相似文献   

4.
Trends in phytoremediation of radionuclides   总被引:5,自引:0,他引:5  
Dushenkov  Slavik 《Plant and Soil》2003,249(1):167-175
Phytoremediation, a novel plant-based remediation technology, is applied to a variety of radionuclide-contaminated sites all over the world. Phytoremediation is defined as the use of green plants to remove pollutants from the environment or to render them harmless. Current status of several subsets of phytoremediation of radionuclides is discussed: (a) phytoextraction, in which high biomass radionuclide-accumulating plants and appropriate soil amendments are used to transport and concentrate radionuclides from the soil into the above-ground shoots, which are harvested with conventional agricultural methods, (b) rhizofiltration, in which plant roots are used to precipitate and concentrate radionuclides from polluted effluents, (c) phytovolatilization, in which plants extract volatile radionuclides from soil and volatilize them from the foliage and (d) phytostabilization, in which plants stabilize radionuclides in soils, thus rendering them harmless. It is shown that phytoremediation is a fast developing field and the phytoremediation of radionuclides might soon become an integral part of the environment management and risk reduction process.  相似文献   

5.
持久性有机污染土壤的植物修复及其机理研究进展   总被引:9,自引:0,他引:9  
随着人类对化学品的依赖程度越来越高,环境的有机污染状况也越来越严重.有机污染土壤的植物修复是指利用植物在生长过程中,吸收、降解、钝化有机污染物的一种原位处理污染土壤的方法,具有应用成本低、生态风险小、对环境副作用小等特点.本文综述了近年来国内外有机污染土壤的植物修复研究进展情况,重点介绍了多氯联苯、多环芳烃、农药和硝基芳香化合物等持久性有机污染物的植物修复,阐述了有机污染土壤植物修复的关键机制,并分析了该技术在实际工程应用中的局限性及应考虑的因素.最后,指出了今后该领域的重点研究方向.  相似文献   

6.
抗生素的环境污染问题日益严峻,如何对抗生素污染的水体和土壤进行有效的原位处理已然成为亟待解决的问题.植物修复是具有处理成本低、二次污染可控、易于后续处理、不破坏土壤和河流生态环境等优势的绿色、原位修复技术,已被证明是可用于抗生素污染治理的处理技术之一.因此,通过文献搜索和总结分析,作者们对植物修复在抗生素污染治理中的应...  相似文献   

7.
Phytoremediation of mine tailings in temperate and arid environments   总被引:9,自引:0,他引:9  
Phytoremediation is an emerging technology for the remediation of mine tailings, a global problem for which conventional remediation technologies are costly. There are two approaches to phytoremediation of mine tailings, phytoextraction and phytostabilization. Phytoextraction involves translocation of heavy metals from mine tailings to the plant shoot biomass followed by plant harvest, while phytostabilization focuses on establishing a vegetative cap that does not shoot accumulate metals but rather immobilizes metals within the tailings. Phytoextraction is currently limited by low rates of metal removal which is a combination of low biomass production and insufficiently high metal uptake into plant tissue. Phytostabilization is currently limited by a lack of knowledge of the minimum amendments required (e.g., compost, irrigation) to support long-term plant establishment. This review addresses both strategies within the context of two specific climate types: temperate and arid. In temperate environments, mine tailings are a source of metal leachates and acid mine drainage that contaminate nearby waterways. Mine tailings in arid regions are subject to eolian dispersion and water erosion. Examples of phytoremediation within each of these environments are discussed. Current research suggests that phytoextraction, due to high implementation costs and long time frames, will be limited to sites that have high land values and for which metal removal is required. Phytostabilization, due to lower costs and easier implementation, will be a more commonly used approach. Complete restoration of mining sites is an unlikely outcome for either approach.  相似文献   

8.
植物修复技术及其遗传工程改良   总被引:1,自引:0,他引:1  
环境的污染在全球变得越来越严重。目前常用的环境污染治理措施不但费用大,效率底,往往还对生态环境本身带来其他的破坏。植物修复技术已在治理环境污染中越来越受到重视。本文综述了植物修复技术的五种应用方式:植物提取、植物降解、植物挥发、植物过滤和植物固定技术对环境污染的修复作用及其机理,并总结了通过遗传工程改良技术来提高植物修复环境污染的能力的研究进展。  相似文献   

9.
环境重金属污染的植物修复及基因工程在其中的应用   总被引:2,自引:0,他引:2  
随着工业技术的发展,重金属在土壤和水体中的含量越来越高,重金属污染已日益成为威胁人类健康和人类生活质量的严重的社会问题和环境问题。植物修复可部分解决这一问题且正引起人们的普遍关注。但现在发现许多用于修复的超量积累植物生长缓慢、植株矮小、地上部生物量小,成了实际应用中的最大限制。利用基因工程手段改变植物对重金属吸收、转运、积累和忍耐的机制,从而提高植物对重金属的富集能力,将成为今后植物修复领域研究的一个重要方向。  相似文献   

10.
Phytoremediation of toxic elemental and organic pollutants   总被引:60,自引:0,他引:60  
Phytoremediation is the use of plants to extract, sequester, and/or detoxify pollutants. Phytoremediation is widely viewed as the ecologically responsible alternative to the environmentally destructive physical remediation methods currently practiced. Plants have many endogenous genetic, biochemical, and physiological properties that make them ideal agents for soil and water remediation. Significant progress has been made in recent years in developing native or genetically modified plants for the remediation of environmental contaminants. Because elements are immutable, phytoremediation strategies for radionuclide and heavy metal pollutants focus on hyperaccumulation above-ground. In contrast, organic pollutants can potentially be completely mineralized by plants.  相似文献   

11.
Phytoremediation is a natural, aesthetically pleasing, low-cost technology that employs plant-influenced microbial, chemical, and physical processes to remediate contaminated soils and waters. The Institute of Gas Technology (IGT) conducted a laboratory study to determine the potential of phytoremediation to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). The soils used for the study were collected from a former manufactured gas plant (MGP) site in Newark, NJ. Phytoremediation was assessed both as a primary remediation technology and as a final polishing step for soil treatment. The following three plant species were used for the 6-month laboratory study: alfalfa (Medicago sativa), switch grass (Panicum virgatum), and little bluestem grass (Schizachyrium scoparium). Using both alfalfa and switch grass for primary treatment of PAH-contaminated soil, a 57% reduction in total PAH concentration was observed after 6-months of treatment. Final polishing of that soil using alfalfa further reduced the total PAH concentration in that soil by 15%. Research is in progress with the objective of improving both the efficiency and the economics of phytoremediation for the cleanup of contaminated soils to environmentally acceptable endpoints at MGP sites.  相似文献   

12.
高生物量经济植物修复重金属污染土壤研究进展   总被引:3,自引:0,他引:3  
植物修复是重金属污染土壤修复的重要方法之一。利用高生物量经济植物修复重金属污染土壤,能够兼顾生态和经济效益,具有很大的应用前景。本文系统分析了植物修复现状及存在的问题,提出利用高生物量经济植物修复重金属污染土壤的优势,总结了近年来利用高生物量经济植物吸收重金属的研究进展,探讨了改善高生物量经济植物修复重金属污染土壤效率的方法,以期为提高植物修复经济效益、促进植物修复广泛应用提供参考。  相似文献   

13.
花卉植物应用于污染土壤修复的可行性研究   总被引:20,自引:0,他引:20  
植物修复是解决污染土壤问题的有效途径之一,而已报道的超积累植物的种类非常有限.如果能从物种繁多的花卉植物中筛选出修复植物,不但能够弥补这一不足,而且还能在美化环境的同时,产生一定的经济效益.从植物修复的重要性和修复植物的筛选出发,概括了修复植物的判断标准及基本特征.通过描述花卉植物资源及其在环境保护中的作用,列举花卉植物与其它植物相比的优势,分析花卉植物的耐性、积累性和修复类型,探讨花卉植物应用于污染土壤修复实践的可行性.从花卉中筛选超积累植物,将为污染土壤的修复工作提供的生物材料.  相似文献   

14.
Phytoremediation, the use of plants to clean up contaminated soil and water, has a wide range of applications and advantages, and can be extended to scientific education. Phytoremediation of textile dyes can be used as a scientific experiment or demonstration in teaching laboratories of middle school, high school and college students. In the experiments that we developed, students were involved in a hands-on activity where they were able to learn about phytoremediation concepts. Experiments were set up with 20—40 mg L?1 dye solutions of different colors. Students can be involved in the set up process and may be involved in the experimental design. In its simplest forms, they use two-week-old sunflower seedlings and place them into a test tube of known volume of dye solution. Color change and/ or dye disappearance can be monitored by visual comparison or with a spectrophotometer. Intensity and extent of the lab work depends on student's educational level, and time constraints. Among the many dyes tested, Evan's Blue proved to be the most readily decolorized azo dye. Results could be observed within 1–2 hours. From our experience, dye phytoremediation experiments are suitable and easy to understand by both college and middle school students. These experiments help visual learners, as students compare the color of the dye solution before and after the plant application. In general, simple phytoremediation experiments of this kind can be introduced in many classes including biology, biochemistry and ecological engineering. This paper presents success stories of teaching phytoremediation to middle school and college students.  相似文献   

15.
It has been estimated that there may be as much as 300 000 ha in the UK where contamination from previous industrial land use has occurred. The ‘Source‐Pathway‐Receptor’ model is used to evaluate these risks. Traditional engineering approaches have dominated remediation technology, but biological methods have become increasingly important in recent years. ‘Bioremediation’ has been defined as ‘the elimination, attenuation or transformation of polluting or contaminating substances by the use of biological processes’. Techniques to treat soil materials include biopiling, windrowing, landfarming and bioventing, all of which depend on microbiological degradation. However, increasingly it also includes the use of vegetation to take up and/or degrade contaminants (phytoremediation) or restrict contaminant movement (phytostabilisation). Phytoremediation can be encouraged by manipulation of the rhizosphere, using selected fungal isolates in a process now defined as phytobial remediation.  相似文献   

16.
A phytoremediation study targeting low-level total petroleum hydrocarbons (TPH) was conducted using cool- and warm-season grasses and willows (Salix species) grown in pots filled with contaminated sandy soil from the New Haven Rail Yard, CT. Efficiencies of the TPH degradation were assessed in a 90-day experiment using 20–8.7–16.6 N-P-K water-soluble fertilizer and fertilizer with molasses amendments to enhance phytoremediation. Plant biomass, TPH concentrations, and indigenous microbes quantified with colony-forming units (CFU), were assessed at the end of the study. Switchgrass grown with soil amendments produced the highest aboveground biomass. Bacterial CFU's were in orders of magnitude significantly higher in willows with soil amendments compared to vegetated treatments with no amendments. The greatest reduction in TPH occurred in all vegetated treatments with fertilizer (66–75%) and fertilizer/molasses (65–74%), followed sequentially by vegetated treatments without amendments, unvegetated treatments with amendments, and unvegetated treatments with no amendment. Phytoremediation of low-level TPH contamination was most efficient where fertilization was in combination with plant species. The same level of remediation was achievable through the addition of grasses and/or willow combinations without amendment, or by fertilization of sandy soil.  相似文献   

17.
植物修复重金属污染及内生细菌效应   总被引:2,自引:0,他引:2  
土壤和水体的重金属污染已严重危害人类生存环境与健康。由于受重金属污染的环境分布广泛,迫切需要开发经济的清除环境重金属的技术。植物修复是通过绿色植物降解或移除环境污染物,有望成为重金属污染环境的原位修复技术。植物内生菌是指定殖于健康植物的各种组织和器官内部的细菌,被感染的宿主植物不表现出外在病症,耐重金属的内生菌在多种超富集植物中存在。在植物修复过程中,野生型内生菌或基因工程内生菌的抗性系统能降低重金属植物毒性,促进其迁移金属。耐重金属内生菌还可以通过固氮、溶解矿物元素及产生类植物激素、铁载体和ACC脱氨酶等产物促进植物的生长。主要综述目前植物-内生菌相互作用及其潜在的促进植物修复重金属污染的研究进展。  相似文献   

18.
方治国  杨青  谢俊婷  都韶婷 《生态学报》2022,42(8):3056-3065
植物修复因投资成本低、环境扰动少、二次污染易控制、美化环境等优点成为重金属污染土壤修复重要的治理技术。植物内源细胞分裂素调控植物生理活动,外源细胞分裂素对植物生理生态特征产生显著影响,且在植物修复中逐渐受到研究人员的关注。细胞分裂素能够调控植物根茎发育、叶片衰老、激素传递等过程,同时在重金属胁迫下也参与蒸腾、光合、抗性、解毒等系统的运转。以细胞分裂素对植物生理活动的调控作用研究为基础,阐述了细胞分裂素在植物修复中的作用机制。主要包括:增强光合作用,延缓叶片衰老,提升植物抗性能力;调控根茎叶发育,增加植物生物量,强化植物富集效果;增强转运蛋白表达,提高叶面蒸腾作用,促进重金属吸收转运;参与解毒过程,降低重金属毒性,调控重金属体内转化。最后提出了细胞分裂素在重金属污染土壤植物修复中的研究方向,这对促进细胞分裂素在植物修复中的实际应用具有重要意义。  相似文献   

19.
Soil pollution is a major environmental problem and many contaminated sites are tainted with a mixture of organic and heavy metal contaminants. Compared to other remedial strategies, phytoremediation is a low cost, environmentally-friendly, sustainable means of remediating the contamination. This review first provides an overview of phytoremediation studies where the soil is contaminated with just one type of pollutant (heavy metals or organics) and then critically evaluates the applicability of phytotechnologies for the remediation of contaminated sites where the soil is polluted by a mixture of organic and heavy metal contaminants. In most of the earlier research studies, mixed contamination was held to be detrimental to plant growth, yet there were instances where plant growth was more successful in soil with mixed contamination than in the soil with only individual contaminants. New effective phytoremediation strategies can be designed for remediation of co-contaminated sites using: (a) plants species especially adapted to grow in the contaminated site (hyperacumulators, local plants, transgenic plants); (b) endophytic bacteria to enhance the degradation in the rizhosphere; (c) soil amendments to increase the contaminants bioavailability [chelating agents and (bio)surfactants]; (d) soil fertilization to enhance the plant growth and microbial activity in the soil; and (e) coupling phytoremediation with other remediation technologies such as electrokinetic remediation or enhanced biodegradation in the rhizosphere.  相似文献   

20.
王剑虹  麻密 《植物学报》2000,17(6):504-510
随着现代化工业的发展,全球向土壤和环境中排放的重金属逐年增加。重金属污染已日益成为威胁人类健康和影响人类生活质量的严重环境问题和社会问题。这一问题可部分通过植物修复技术得以解决。植物修复技术是依据植物从环境中积累重金属元素和化合物的能力及其将这些有毒物质在植物体内代谢成无毒生物小分子的能力而建立的新的生物技术。本篇综述主要论及利用植物修复技术解决重金属污染的生物学机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号