首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
[目的] 探究镉吸附细菌是否能够高效固定土壤有效镉(Cd),为土壤有效Cd的微生物固定提供理论依据。[方法] 利用含Cd2+牛肉膏蛋白胨液体培养基对细菌进行Cd的耐受性测试筛选出镉抗性强的菌株;通过16S rRNA基因相似性及系统进化分析鉴定耐镉细菌,将菌细胞加入含CdCl2溶液中进行Cd2+吸附效率测定;通过土培模拟实验,测定土壤pH、碱解氮、有效磷、速效钾、有机质、CEC、有效Cd及微生物数量来分析镉吸附细菌对镉污染土壤的影响。[结果] 从德阳鱼腥草根际土壤中分离获得的57株细菌对Cd2+表现出不同程度的抗性,并从中筛选出3株耐Cd优势细菌普罗威登斯菌属(Providencia)DY8、芽孢杆菌属(Bacillus)DY3和芽孢杆菌属(Bacillus)DY1-4。其对溶液中的Cd2+表现出较好的吸附作用,吸附效率随着Cd2+浓度升高而降低。DY8、DY3、DY1-4能使镉污染土壤中有效Cd含量分别降低72.11%、68.55%、62.32%,同时显著提高镉污染土壤中碱解氮、有效磷的含量。[结论] Cd污染农田土壤中含有丰富的耐Cd微生物资源,Cd吸附细菌能降低土壤中有效Cd的含量,且能有效改善土壤养分条件。  相似文献   

2.
In previous studies, nonlethal CdCl2 concentrations apparently inhibited basal Y-1 mouse adrenal tumor cell endogenous mitochondrial cholesterol conversion to pregnenolone. In addition, CdCl2 inhibited all agents stimulating both plasma membrane-dependent cAMP synthesis and 20-hydroxy-4-pregnen-3-one (20DHP) secretion. Bypassing the plasma membrane using dibutyryl-cAMP (dbcAMP) stimulated cytoplasmic cholesterol metabolism and 20DHP secretion in the presence of CdCl2. Since CdCl2 competed at metabolic steps requiring Ca2+ in other tissues, experiments were designed to examine Cd2+ competition with Ca2+ during steroidogenesis. Sets of cells incubated with either medium or adrenocorticotropin (ACTH) with or without CdCl2 were also treated with 0, 1.0, 5.0 or 10.0 mmol/L CaCl2 in the presence or absence of EGTA, a relatively specific Ca2+, but not Cd2+, chelating agent. Another experimental cell set incubated with either medium or ACTH, with or without CdCl2, was treated with or without 1 mmol/L A23187, an ionophore specifically facilitating extracellular Ca2+ transfer across plasma membranes. Besides determining Ca2+ involvement in steroidogenesis using steroid secretion as an endpoint, we directly measured Ca2+ concentrations using intracellular fura-2 fluorescence. Following loading with 2 mol/L fura-2, cells remained untreated or medium was infused with CdCl2, ACTH, ACTH/CdCl2 or ACTH followed after 50 s by CdCl2. Using Ca2+-supplemented media, we observed that Cd2+ inhibition of ACTH-stimulated 20DHP secretion was completely reversed. Standard Ca2+-containing medium supplemented with Ca2+ also enhanced maximally stimulated 20DHP secretion by ACTH. 20DHP secretion by ACTH-treated and ACTH/Cd2+-treated cells was only reduced by EGTA, when Ca2+ was not supplemented. The ionophore A23187 increased basal and ACTH-stimulated 20DHP secretion by Cd2+-treated cells, suggesting that extracellular Ca2+ resources may compete against Cd2+ effects on plasma membrane cAMP synthesis and on basal cholesterol metabolism by mitochondria. No time-dependent change in Ca2+ concentrations occurred within untreated cell suspensions. ACTH stimulation caused a 25 s burst in Ca2+ concentrations before returning to basal, steady-state levels. Cd2+ also stimulated intracellular fura-2 fluorescence. Untreated cell suspensions infused with Cd2+ exhibited a continuous rise in intracellular fluorescence. ACTH/CdCl2-treated cells exhibited a hyperbolic rise in intracellular fluorescence over the 300 s study period. Cells treated with Cd2+ 50 s after ACTH treatment initially exhibited the 25 s fluorescence burst followed by a Cd2+-induced hyperbolic rise in intracellular Cd2+. These fluorescence measurements suggested that cytoplasmic Ca2+ changes do not appear to be necessary for basal 20DHP synthesis and secretion; only a 25 s burst in intracellular Ca2+ is necessary to a slightly higher plateau level for stimulated 20DHP synthesis and secretion. Cd2+ freely enters the cell under basal conditions and Cd2+ entry is accelerated by ACTH stimulation. Data were consistent with Ca2+ being required for optimal stimulated steroid production and Cd2+ probably competing with Ca2+ during basal mitochondrial cholesterol metabolism and plasma membrane ACTH-stimulated cAMP generation.  相似文献   

3.
A Cd2+-resistant Escherichia coli C600 transformant harboring pGU100, which was derived from Cd2+-resistant Pseudomonas putida GAM-1, was able to grow in concentrations of CdCl2 as high as 3.5 mM, whereas E. coli C600 could not grow in the presence of 1.5 mM CdCl2. E. coli C600 (pGU100) possesses a Cd2+ efflux system. This efflux system was inhibited by 100 μM dicyclohexylcarbodiimide, indicating that the system seems to be energy-dependent. Further studies revealed that the Cd2+ efflux system of E. coli C600 (pGU100) can operate under proliferous conditions, but not under nonproliferous conditions.  相似文献   

4.
Cadmium (Cd2+) is one of the most toxic heavy metal pollutants in nature. Mesophyll cells from the leaf of radish seedlings exposed to 0.25 and 1.0 mM of CdCl2 during 24 h exhibited structural changes of chloroplasts, mitochondria and nuclei when compared to non-treated control plants. Chloroplasts from Cd2+-exposed samples exhibited changes in the organelle shape, an increase in the stroma volume and a deposition of electron-dense material in the double membrane. The changes in the chloroplast membranes were not very drastic, however and reorganization of the thylakoids and stroma was observed. In contrast, the breakdown of the nuclear envelope of the plant cells treated with Cd2+ was very clear. The accumulation of electron-dense granules was also observed in mitochondria. No alterations were observed in the vacuoles of radish seedlings grown at different Cd2+ concentrations for the periods tested.  相似文献   

5.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

6.
Effect of Cl on Cd uptake by Swiss chard in nutrient solutions   总被引:6,自引:1,他引:5  
Swiss chard (Beta vulgaris L., cv. Fordhook Giant) was grown in nutrient solution with Cl concentrations varying between 0.01 mM and 120 mM. Solution Na concentration and ionic strength were maintained in all treatments by compensating with NaNO3. All solutions contained Cd (50 nM, spiked with 109Cd). Three different Cd2+ buffering systems were used. In one experiment, Cd2+ activity was unbuffered; its activity decreased with increased Cl concentration as a result of the formation of CdCln 2–n species. In the other experiments, Cd2+ activity was buffered by the chelator nitrilotriacetate (NTA, 50 M) and ethylene-bis-(oxyethylenenitrilo)-tetraacetate (EGTA, 50 M) at about 10–9 M and 10–11 M, respectively. Plant growth was generally unaffected by increasing Cl concentrations in the three experiments. In unbuffered solutions, Cd concentrations in plant tissue decreased significantly (p<0.01) (approximately 2.4-fold) as solution Cl concentration increased from 0.01 mM to 120 mM. However, this decrease was smaller in magnitude than the 4.7-fold decrease in Cd2+ activity as calculated by the GEOCHEM-PC program for the same range of Cl concentrations. In solutions where Cd2+ activity was buffered by NTA, Cd concentrations in plant tissue increased approximately 1.4-fold with increasing Cl concentration in solution, while the Cd2+ activity was calculated to decrease 1.3-fold. In solutions where Cd2+ activity was buffered by EGTA, Cd concentrations in the roots increased 1.3-fold with increasing Cl concentration in solution but there was no effect of Cl on shoot Cd concentrations. The data suggest that either CdCln 2–nspecies can be taken up by plant roots or that Cl enhances uptake of Cd2+ through enhanced diffusion of the uncomplexed metal to uptake sites.Abbreviations DAS days after sowing - EGTA ethylene-bis-(oxyethylenenitrilo)-tetraacetate - HBED N,N-bis(2-hydroxybenzyl)-ethylenediamine-N,N-diacetate - NTA nitrilotriacetate  相似文献   

7.
Cadmium is a highly toxic metal entering cells by a variety of mechanisms. Its toxic action is far from being completely understood, although specific interaction with the cellular calcium metabolism has been indicated. Metal ions that influence intracellular Ca2+ concentrations or compete with Ca2+ for protein binding sites may exert an effect on actin filaments, whose assembly and disassembly are both regulated by a number of calcium-dependent factors. Cadmium is such a metal. Much evidence demonstrates that cadmium interferes with the dynamics of actin filaments in various types of cells. Here we show that, at high (0.8–1.0 mM) concentrations, CdCl2 causes actin denaturation. At such Cd2+ concentrations, actin precipitates (really actin, as shown by SDS-PAGE, see Fig. 1B) in the form of irregular, disordered clots, clearly appreciable by electron microscopy. Denaturation seems to be reversible since, after Cd2+ removal by dialysis, the polymerizability of sedimented actin is restored almost completely. On the other hand, at concentrations ranging from 0.25 to 0.6 mM, CdCl2 is more effective as an actin polymerizing agent than both MgCl2 and CaCl2. The Cd-related increase in the actin assembly rate is ascribable to an enhanced nucleation rather than to an increased monomer addition to filament growing ends. The latter, in contrast, appears quite slow. Critical concentration measurements revealed that the extent of polymerization of both Mg- and Cd-assembled actin are very close (Cc ranges from 0.25 to 0.5 μM), while Ca-polymerized actin shows a polymerization extent markedly lower (Cc=4.0 μM). By both the fluorescent Ca2+ chelator Quin-2 assay and limited proteolysis of actin by trypsin and α-chymotrypsin, the real substitution of G-actin-bound Ca2+ by Cd2+ has been appreciated. The increase in Quin-2 fluorescence after addition of excess CdCl2 indicates that, in our experimental conditions, Ca2+ tightly-bound to actin is partially (60–70%) replaced by Cd2+, forming Cd-actin. Electrophoretic patterns after limited proteolysis reveal that the trypsin cleavage sites in the segment 61–69 of the actin polypeptide chain are less accessible in Cd-actin than in Ca-actin, although the cation-dependent effect is less pronounced in Cd-actin than in Mg-actin. Our results are consistent with some of the consequences on microfilament organization observed in Cd2+-treated cells; however, considering the positive effect of Cd2+ on actin polymerization in solution we have noticed that this was never observed in vivo. A different indirect effect of Cd2+ on some cellular event(s) influencing cytoplasmic actin polymerization appears to be reasonable. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

8.
Although cadmium-induced apoptosis of lymphocytes is one of common features in the immunotoxicity of cadmium, the membrane pathway for intracellular cadmium accumulation is not fully elucidated. To characterize membrane Cd2+ transport of rat thymocytes, the change in intracellular Cd2+ concentration under various conditions was examined by the use of Fluo-3, a fluorescent probe for monitoring the change in intracellular concentration of divalent metal cations. The membrane Cd2+ transport was estimated by the augmentation of Fluo-3 fluorescence induced by bath application of CdCl2. Lowering temperature strongly suppressed the augmentation of Fluo-3 fluorescence by CdCl2, suggesting that the metabolic process can be involved in membrane Cd2+ transport. External acidification (decreasing pH) and membrane depolarization by adding KCl attenuated the augmentation, indicating the requirement of electrochemical driving force for membrane Cd2+ transport into the cells. Bath application of CaCl2 and ZnCl2 equally decreased the augmentation, suggesting their competition with Cd2+ at the membrane transport. The augmentation by CdCl2 was lesser in the cells treated with N-ethylmaleimide inducing chemical depletion of cellular thiols. The result suggests the contribution of sulfhydryl groups to membrane Cd2+ transport. Taken together, it is suggested that the cells possess a temperature-sensitive membrane Cd2+ pathway, driven by electrochemical gradient of Cd2+ and transmembrane potential, with competitive binding site. Based on the characteristics described above, it is unlikely that the membrane Cd2+ transport in rat thymocytes is attributed to a single transport system although it has characteristics that are similar to those of divalent cation transporter 1.  相似文献   

9.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

10.
Tůmová  E.  Sofrová  D. 《Photosynthetica》2002,40(1):103-108
Intact cells of Synechococcus elongatus were treated with different concentrations (0.1 and 1.0 mM = Cd0.1, Cd1.0) of CdCl2 for 24 h. Cd0.1 treatment stimulated growth of the cell culture and chlorophyll (Chl) a concentration in the culture. Cd1.0 inhibited both the above mentioned parameters. The oxygen evolving activity of intact cells (H2O BQ) as well as of isolated thylakoid membranes, TM (H2O DCPIP; H2O PBQ + FeCy) decreased after 24 h of Cd1.0 cultivation to 7 %. Photosystem 1 (PS1) activity was less sensitive to the effect of Cd2+ than PS2 activity. CdCl2 concentration in cultivation media after 24 h of cultivation proved that the cyanobacterium cells take up these ions to a large extent from the cultivation medium. After 24 h of the Cd1.0 treatment only 12 % of the amount of Cd2+ originally added to the cultivation medium was found. The ratio of external-antenna pigments, phycocyanin, and allophycocyanin to Chl increased approximately twofold with growing Cd2+ concentration in the cultivation medium. This ratio was found in both TM and dodecylmaltoside extracts.  相似文献   

11.
Liu JM  Wang HX  Lin LP  Lin SQ  Lin X  Cai WL  Lin CQ  Li ZM 《Luminescence》2012,27(5):346-351
3.5‐Generation polyamidoamine dendrimers (3.5‐G‐D) emitted strong and stable room‐temperature phosphorescence (RTP) on filter paper when Pb2+ was used as a heavy atom perturber. The RTP signal of 3.5‐G‐D was sharply enhanced upon the formation of 3.5‐G‐D–Tween‐80 micelle compound. The complex Cd2+–3.5‐G‐D–Tween‐80, generated in the coordination reaction between Cd2+ and the tertiary amidocyanogen on the outer layer of 3.5‐G‐D in 3.5‐G‐D–Tween‐80 micelle compound, could catalyze KBrO3 to oxidize 3.5‐G‐D in 3.5‐G‐D–Tween‐80, which caused the sharp quenching of the RTP signal of the system. The phosphorescence intensity change (ΔIp) of the system had a linear relationship with the content of Cd2+. Thus a new catalytic solid substrate–room‐temperature phosphorimetry (SS‐RTP) for the determination of trace cadmium has been established. This highly selective and sensitive method has been applied to determine trace cadmium in biological samples with a limit of detection (LD) of 1.2 ag per spot (when the sample volume was 0.4 μL per spot, the corresponding concentration was 3.0 × 10?15 g mL?1), the results agreeing with those obtained by atomic absorption spectrometry. The mechanism of catalytic SS‐RTP for the determination of trace cadmium was also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In the present study Prosopis juliflora plants grown in hydroponics solution were exposed to 50,100 and 1000 μM CdCl2. The cadmium uptake, transport and toxicity on the photosynthetic activities in the plants were measured at 48 h after starting cadmium treatments. The results showed that the concentration of Cd2+ in P. juliflora tended to increase with addition of Cd2+ to hydroponics solution. However, the increase of Cd2+ in roots and leaves varied largely. In this sense, the accumulation of Cd2+ in P. juliflora roots increased significantly in proportion with the addition of this metal. In contrast a relatively low level of Cd2+ transportation index, and bioaccumulation factor were found in P. juliflora at 48 h after of treatments. On the other hand the maximum photochemical efficiency of photosystem II (Fv/Fm) and the activity of photosystem II (Fv/Fo) ratios in P. juliflora leaf treated with Cd2+ not showed significantly changes during the experiment. These results suggested that the photosynthetic apparatus of P. juliflora was not the primary target of the Cd2+ action. Further studies will be focused in understanding the participation of the root system in Prosopis plants with the rhizosphere activation and root adsorption to soil Cd2+ under natural conditions.  相似文献   

13.
Sunflower (Helianthus annuus L.) seeds were germinated and grown in the presence of 50, 100 and 200 μM CdCl2. The lower concentration (50 μM) of Cd2 ions produced slight decrease in reduced glutathione (GSH) content and overall increase (except superoxide dismutase) in antioxidant enzyme activities, and in H2O2 concentration. Chlorophyll content, lipid peroxidation and protein oxidation were not affected under 50 μM CdCl2. GSH content was diminished under 100 and 200 μM CdCl2, and except for superoxide dismutase, which activity remained unaltered, overall decreases in the antioxidant enzyme activities (catalase, ascorbate peroxidase, dehydroascorbate peroxidase, glutathione reductase) and in guaiacol peroxidase were observed. These Cd2 concentrations caused a decrease in chlorophyll content as well as an increase in lipid peroxidation, protein oxidation and H2O2 concentration. All the observed effects were more evident with the highest concentration of cadmium chloride used. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The effect of pH-increases due to Ca(OH)2 and KOH addition on the adsorption of cadmium (Cd) was examined in two soils which varied in their variable-charge components. The effect of Ca(OH)2 on immobilization and phytoavailability of Cd from one of the soils, treated with various levels of Cd (0–10 mg Cd kg–1 soil), was further evaluated using mustard (Brassica juncea L.) plants. Cadmium immobilization in soil was evaluated by a chemical fractionation scheme. The addition of Ca(OH)2 and KOH increased the soil pH, thereby increasing the adsorption of Cd, the effect being more pronounced in the soil dominated by variable charge components. There was a greater increase in Cd2+ adsorption in the KOH-treated than the Ca(OH)2-treated soil, which is attributed to the greater competition of Ca2+ for adsorption. Increasing addition of Cd enhanced Cd concentration in plants, resulting in decreased plant growth (i.e., phytotoxicity). Although addition of Ca(OH)2 effectively reduced Cd phytotoxicity, Cd uptake increased at the highest level, probably due to decreased Cd2+ adsorption resulting from increased Ca2+ competition. There was a significant inverse relationship between dry matter yield and Cd concentration in soil solution. Addition of Ca(OH)2 decreased the concentration of the soluble + exchangeable Cd fraction but increased the concentration of inorganic-bound Cd fractions in soil. Since there was no direct evidence for CdCO3 or Cd(OH)2 precipitation in the variable charge soil used for the plant growth experiment, alleviation of phytotoxicity can be attributed primarily to immobilization of Cd by enhanced pH-induced increases in negative charge.  相似文献   

15.
A glucose-tolerant strain of the cyanobacterium Synechocystis sp. PCC 6803, generally referred to as wild type, produces a hemolysin-like protein (HLP) located on the cell surface. To analyze the function of HLP, we constructed a mutant in which the hlp gene was disrupted. The growth rate of the mutant was reduced when the cells were stressed by treatment with CuSO4, CdCl2, ZnCl2, ampicillin, kanamycin, or sorbitol in liquid medium, suggesting that HLP may increase cellular resistance to the inhibitory effects of these compounds. Uptake assays with 109Cd2+ using the silicone–oil layer centrifugation technique revealed that both wild type and mutant cells were labeled with 109Cd2+ within 1 min. Although the total radioactivity was much higher in the wild-type cells, 109Cd2+ incorporation was clearly much higher in the mutant cells after adsorbed 109Cd2+ was removed from the cell surface by washing with EDTA. These findings suggest that HLP functions as a barrier against the adsorption of toxic compounds.  相似文献   

16.
The effect of cadmium on the photosynthetic activity of Synechocystis PCC 6803 was monitored in this study. The oxygen evolving capacity of Synechocystis treated with 40 μM CdCl2 was depressed to 10% of the maximum in 15 min, indicating that Cd2+ penetrated rapidly into the cells and blocked the photosynthetic activity. However, neither photosystem II (PSII) nor photosystem I (PSI) activity showed a significant short-term decrease which would explain this fast decrease in the whole-chain electron transport. Thermoluminescence measurements have shown that the charge separation and stabilization in PSII remains essentially unchanged during the first few hours following the Cd2+ treatment. The electron flow through PSI was monitored by following the redox changes of the P700 reaction centers of PSI. Alterations in the oxidation kinetics of P700 in the Cd2+-treated cells indicated that Cd2+ treatment might affect the available electron acceptor pool of P700, including the CO2 reduction and accumulation in the cells. Perturbed angular correlation of γ-rays (PAC) using the radioactive 111mCd isotope was used to follow the Cd2+ uptake at a molecular level. The most plausible interpretation of the PAC data is that Cd2+ is taken up by one or more Zn proteins replacing Zn2+ in Synechocystis PCC 6803. Using the radioactive 109Cd isotope, a protein of approximately 30 kDa that binds Cd2+ could be observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results indicate that Cd2+ might inactivate different metal-containing enzymes, including carbonic anhydrase, by replacing the zinc ion, which would explain the rapid and almost full inhibition of the photosynthetic activity in cyanobacteria.  相似文献   

17.
Han  Yansha  Wang  Shaojie  Zhao  Nan  Deng  Shurong  Zhao  Chenjing  Li  Nianfei  Sun  Jian  Zhao  Rui  Yi  Huilan  Shen  Xin  Chen  Shaoliang 《Journal of Plant Growth Regulation》2016,35(3):827-837

Abscisic acid (ABA), a widely known phytohormone involved in the plant response to abiotic stress, plays a vital role in mitigating Cd2+ toxicity in herbaceous species. However, the role of ABA in ameliorating Cd2+ toxicity in woody species is largely unknown. In the present study, we investigated ABA restriction on Cd2+ uptake and the relevance to Cd2+ stress alleviation in Cd2+-hypersensitive Populus euphratica. ABA (5 μM) markedly improved cell viability and growth but reduced membrane permeability in CdCl2 (100 μM)-stressed P. euphratica cells. Moreover, ABA significantly increased the activity of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX), contributing to the scavenging of Cd2+-elicited H2O2 within P. euphratica cells during the period of CdCl2 exposure (100 μM, 24–72 h). ABA alleviation of Cd2+ toxicity was mainly the result of ABA restriction of Cd2+ uptake under Cd2+ stress. Steady-state and transient flux recordings showed that ABA inhibited Cd2+ entry into Cd2+-shocked (100 μM, 30 min) and short-term-stressed P. euphratica cells (100 μM, 24–72 h). Non-invasive micro-test technique data showed that H2O2 (3 mM) stimulated the Cd2+-elicited Cd2+ influx but that the plasma membrane (PM) Ca2+ channel inhibitor LaCl3 blocked it, suggesting that the Cd2+ influx was through PM Ca2+-permeable channels. These results suggested that ABA up-regulated antioxidant enzyme activity in Cd2+-stressed P. euphratica and that these enzymes scavenged the Cd2+-elicited H2O2 within cells. The entry of Cd2+ through the H2O2-mediated Ca2+-permeable channels was subsequently restricted; thus, Cd2+ buildup and toxicity were reduced in the Cd2+-hypersensitive species, P. euphratica.

  相似文献   

18.
AlCl3, MnCl2, and CdCl2 inhibited the rates of accumulation of 14C] L-glutamate and 3H] gammaaminobutyrate (GABA) in purified rat forebrain nerve-ending particles in a dose-dependent fashion. The concentrations that would give 50% inhibition (IC50) of GABA transport were 316 μM, 7.4 mM, and 1.4 mM, respectively. Ca2+ (1 mM) enhanced the inhibitory effect of Al3+ (IC50 decreased to 149 μM) but antagonized that of Mn2+ (IC50 = 10 mM) and Cd2+ (IC50 = 2.1 mM). For glutamate transport 1 mM Ca2+ changed the IC50 values from 299 to 224 μm for Al3+, 7.1 to 10 mM for Mn2+, and 2 to 3 mM for Cd2+. In contrast, the rates of accumulation of 14C] 2-deoxy-glucose and 3H] L-phenylalanine were mostly unaffected by these metal ions. The results indicate that Al3+, Mn2+, and Cd2+ exerted selective and differential effects on the transport systems of neurotransmitter substances in the synaptosomal membrane.  相似文献   

19.
The effect of CdCl2 in a concentration range 0.01-10.0 g m-3 on the growth ofChlorella vulgaris under synchronous cultivation conditions was determined. The general biological activity, the growth multiplication factor, the cell size and shape and intracellular arrangement showed disturbances of synchronization that depended on Cd2+ concentration. The highest inhibition of all mentioned parameters was observed when Cd2+ was administered after the second hour of synchronous cultivation, whereas the administration after 6 or 8 h did not induce any significant effect.  相似文献   

20.
Rat kidney epithelial cell culture for metal toxicity studies   总被引:3,自引:0,他引:3  
Summary Evaluation of the potential adverse human health effects of low-level chronic exposure to heavy metals is dependent on the basic knowledge of the cellular and molecular toxicology of these metals. The use of various cell culture systems has greatly facilitated our knowledge of the cellular effects. Inasmuch as most of the acute and chronic toxic effects of metals occur primarily on the renal proximal tubules, the development of a rat kidney epithelial cell culture has provided a unique system to study the uptake and mechanism of toxicity of metals and their intracellular binding ligands. In the presence ofd-valine, fibroblast growth was retarded and a primary epithelial monolayer culture was selectively grown from rat kidney cells. A distinct difference in the uptake of chemically similar divalent metals, such as Pb2+, Hg2+, Cd2+, and Zn2+, was observed in these cells. Both Pb2+ and Hg2+ were more avidly taken up by kidney cells than Cd2+ and Zn2+ salts and they also showed increased toxicity. On the other hand, the cellular uptake of Cd from cadmium-metallothionein (CdMT) was much less than from CdCl2, but CdMT was about seven times more toxic than CdCl2 when added to the renal cell culture. The cytotoxicity of CdCl2 was decreased significantly with pretreatment of the cells with CdCl2, although this had no effect on the toxicity of CdMT. The cellular toxicity of CdMT occurred probably during the process of its transport across the plasma membrane whereas that of CdCl2 occurred after it had entered the cell. Thus rat kidney epithelial cells may be a useful tool to study the mechanism of renal toxicity of environmental chemicals and drugs. This work was funded by grants-in-aid of research from the Kidney Foundation of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号