首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Uptake, distribution, and speciation of chromium in Brassica juncea   总被引:1,自引:0,他引:1  
Brassica juncea (Indian mustard) has been widely used in phytoremediation because of its capacity to accumulate high levels of chromium (Cr) and other metals. The present study was conducted to investigate mechanism(s) involved in Cr binding and sequestration by B. juncea. The plants were grown under greenhouse conditions in field-moist or air-dried soils, amended with 100 mg kg(-1) of Cr (III) or VI). The plant concentrated Cr mainly in the roots. B. juncea removed an average of 48 and 58 microg Cr per plant from Cr (III) and Cr (VI)-treated soils, respectively. The uptake of Cr was not affected by the moisture status of the soils. X-ray absorption near-edge spectroscopy measurements showed only Cr (III) bound predominantly to formate and acetate ligands, in the bulk and rhizosphere soils, respectively. In the plant tissues, Cr (III) was detected, primarily as acetate in the roots and oxalate in the leaves. X-ray microprobe showed the sites of Cr localization, and probably sequestration, in epidermal and cortical cells in the roots and epidermal and spongy mesophyll cells in the leaves. These findings demonstrate the ability of B. juncea to detoxify more toxic Cr (VI), thereby making this plant a potential candidate for phytostabilization.  相似文献   

2.
A major goal of phytoremediation is to transform fast-growing plants with genes from plant species that hyperaccumulate toxic trace elements. We overexpressed the gene encoding selenocysteine methyltransferase (SMT) from the selenium (Se) hyperaccumulator Astragalus bisulcatus in Arabidopsis and Indian mustard (Brassica juncea). SMT detoxifies selenocysteine by methylating it to methylselenocysteine, a nonprotein amino acid, thereby diminishing the toxic misincorporation of Se into protein. Our Indian mustard transgenic plants accumulated more Se in the form of methylselenocysteine than the wild type. SMT transgenic seedlings tolerated Se, particularly selenite, significantly better than the wild type, producing 3- to 7-fold greater biomass and 3-fold longer root lengths. Moreover, SMT plants had significantly increased Se accumulation and volatilization. This is the first study, to our knowledge, in which a fast-growing plant was genetically engineered to overexpress a gene from a hyperaccumulator in order to increase phytoremediation potential.  相似文献   

3.
Technogenic activities (industrial—plastic, textiles, microelectronics, wood preservatives; mining—mine refuse, tailings, smelting; agrochemicals—chemical fertilizers, farm yard manure, pesticides; aerosols—pyrometallurgical and automobile exhausts; biosolids—sewage sludge, domestic waste; fly ash—coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.  相似文献   

4.
Phytoremediation is emerging as an alternative agriculture-based technology because remediation of metalpolluted sites can be brought about utilizing the ability of plants to uptake and store contaminants in them. A field study was conducted to assess the role of Indian mustard in phytoremediation of chromium-contaminated substrata. Uptake parameters, namely, bio-concentration factor, translocation index, Cr distribution within plant, and tolerance index were used in determining the remediation potential of the crop. A significant increase in Cr accumulation (0.64–4.19 mg g−1 DW, stem; and 0.77–1.1 mg Cr g−1 DW, root), coupled with high tolerance indices, was observed in response to Cr stress, thus showing that Indian mustard is a potential hyperaccumulator. Movement and subsequent distribution of metal ions in the plant were assessed by studying the translocation index which showed a consistent increase (27–87% at T5) with time, and bioconcentration factor, where also an increase over a time period was observed in stem (1.3–11.4, T1) and root (1.96–5.56, T1), thereby, depicting the strong ability of Indian mustard for phytoextraction. A significant decline, however, was observed in the bioconcentration factor with increase in the dose of Cr application.  相似文献   

5.
Indian mustard (Brassica juncea) plants overexpressing ATP sulfurylase (APS transgenics) were previously shown to have higher shoot selenium (Se) levels and enhanced Se tolerance compared to wild type when supplied with selenate in a hydroponic system. Other transgenic Indian mustard overexpressing cystathionine-gamma-synthase (CGS) showed a higher Se volatilization rate, lower shoot Se levels, and higher Se tolerance than wild type, also in hydroponic studies. In the present study, these APS and CGS transgenics were evaluated for their capacity to accumulate Se from soil that is naturally rich in Se. Wild-type Indian mustard and the Se hyperaccumulator Stanleya pinnata were included for comparison. After 10 weeks on Se soil, the APS transgenics contained 2.5-fold higher shoot Se levels than wild type Indian mustard, similar to those of S. pinnata. The CGS transgenics contained 40% lower shoot Se levels than wild type. Shoot biomass was comparable for all Indian mustard types and higher than that of S. pinnata. These results obtained with these transgenics on soil are in agreement with those obtained earlier using hydroponics. The significance of these findings is that they are the first report on the performance of transgenic plants on Se in soil and show the potential of genetic engineering for phytoremediation.  相似文献   

6.
Tellurium (Te) is widely used in industry because of its unique chemical and physical properties, and has recently become a part of everyday life as a component of phase-change optical magnetic disks. However, the recovery of Te from the environment has not been discussed yet. In this regard, we evaluated the potential use of Indian mustard (Brassica juncea), a selenium (Se) accumulator, for the phytoremediation of Te. The Indian mustard plant was exposed to selenate and tellurate and the concentrations of Se and Te and the chemical species in the plant were determined. The Indian mustard plant accumulated less Te than Se, and the amount of Te accumulated in the plant was approximately 1/69 of that of Se. Although the incorporation of selenate was reduced by increasing sulfate concentration in the medium, the incorporation of Te was not affected by it, suggesting that this plant was able to discriminate tellurate from selenate in the roots. Three Te species were detected in the plant. The major species was tellurate. The other two species were not identical to available Te standards and thus could not be identified. Consequently, the Indian mustard plant is inappropriate for the phytoremediation of Te because it can strictly distinguish tellurate from selenate.  相似文献   

7.
The purpose of this study was to compare the behavior of the root system of one of the most frequently cited species in phytoremediation Indian mustard [Brassica juncea (L.) Czern.] and a representative perennial herb (Bidens pilosa L.) native of Argentina, for different concentrations of lead in soils through chemical and visualization techniques of the rhizosphere. Lead polluted soils from the vicinity of a lead recycling plant in the locality of Bouwer, were used in juxtaposed rhizobox systems planted with seedlings of B. juncea and B. pilosa with homogeneous and heterogeneous soil treatments. Root development, pH changes in the rhizosphere, dry weight biomass, lead content of root and aerial parts and potential extraction of lead by rhizosphere exudates were determined. In both species lead was mainly accumulated in roots. However, although B. juncea accumulated more lead than B. pilosa at elevated concentrations in soils, the latter achieved greater root and aerial development. No changes in the pH of the rhizosphere associated to lead were observed, despite different extractive potentials of lead in the exudates of the species analyzed. Our results indicated that Indian mustard did not behave as a hyperaccumulator in the conditions of the present study.  相似文献   

8.
This study uses an ecotoxicology approach to evaluate the effectiveness of combining powdered marble as an amendment, with phytostabilization by Medicago sativa L. on the neutralization of acidic mine tailings, and the stabilization of heavy metals. The mine tailings were collected from an abandoned polymetallic mine in Southern Morocco, and mixed with powdered marble as the following proportions, 25%, 50%, and 75%. Laboratory immobilization/stabilization tests showed that the application of powdered marble in the treatments led to a significant increase in pH, and significant reductions of Cu, Zn (99%), Pb (98%), and Fe (45%). Greenhouse experiments showed that plant growth in all treatments was significantly (p ≤ 0.05) less than growth in agricultural soil. Plant growth significantly (p ≤ 0.05) decreased as the proportion of powdered marble increased. The concentration of metals in plant roots were significantly (p ≤ 0.05) higher than those of shoots. Combining immobilization by powdered marble with phytostabilization by M. sativa L. could represent a viable method of rehabilitating acidic polymetallic mine tailings.  相似文献   

9.
采用室内模拟试验方法,研究了在水稻土、元江土和墨江土中添加泡囊假单胞菌(Pseulormanas vesicularis)后土壤中微生物种群数量、土壤酶活性和镍超积累植物Alyssum corsicum对土壤镍的富集效果.土壤接种泡囊假单胞菌70d后,水稻土中DTPA提取态镍较对照土中的明显减少、元江土和墨江土中的有所减少;土壤中细菌、真菌和放线菌数量增加,5种土壤酶活性提高.试验结果表明,水稻土、元江土、墨江土添加泡囊假单菌后植物地上部生物量较对照分别增加了29%、309%和43%,进而提高了A.corsicum自土壤中富集镍的效率:水稻土中增加54%,元江土中增加306%,墨江土中增加32%.泡囊假单胞菌这一新用途的发现,可为植物修复微生物制剂和基因工程菌的开发提供本土的微生物的菌种资源.  相似文献   

10.
丛枝菌根在植物修复重金属污染土壤中的作用   总被引:23,自引:0,他引:23  
王发园  林先贵 《生态学报》2007,27(2):793-801
丛枝菌根(Arbuscular mycorrhizae,AM)是自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生,常见于包括重金属污染土壤在内的各种生境中。在重金属污染条件下,AM真菌可以减轻重金属对植物的毒害,影响植物对重金属的吸收和转运,在重金属污染土壤的植物修复中显示出极大的应用潜力。重点介绍了AM真菌对植物重金属耐性的影响及其在植物提取和植物稳定中的应用等方面的进展,讨论了未来研究所面临的任务和挑战。  相似文献   

11.
A greenhouse pot experiment was conducted to evaluate the feasibility of using a native ornamental plant, Mesua ferrea L. as phytostabilizer for chromium ore tailings (COT) and to assess the metal accumulation capacity. Different ratios of soil and COT were taken in pots and sowed with seeds of M. ferrea. Plants were harvested at various intervals and separated into roots and shoots for analysis of metal concentrations and physiological characteristics of the plants. The study revealed that the plant has great tolerance and stronger ability to accumulate Cr. The results suggested an increase in growth, chlorophyll content, antioxidant activities, as well as metal accumulation capacity of M. ferrea with increasing proportion of COT in the soil. This indicates the plant's efficiency to overcome any stress generated due to excess of chromium as well as other heavy metals. The order of accumulation of heavy metals was observed to be Fe>Cr>Ni>Cd>Co. The accumulation of Cr was higher in root compared to that in shoot. M. ferrea has found to be potential as a native species candidate for phytostabilization of chromium mine tailings.  相似文献   

12.
芒属植物重金属耐性强,并且是重要的能源植物,其在矿山废弃地植被恢复中的应用备受关注.芒属植物对多种重金属耐性强,但不属于重金属超累积植物.目前的研究认为,根系代谢能力强、根际存在多种共生微生物及抗氧化和光合作用能力强是芒属植物重金属耐性强的重要原因,但更为全面的耐性机理需要深入研究.芒属植物在矿山废弃地植被恢复的应用潜力大,可以清除土壤重金属、改善土壤性质和促进生物多样性发展.本文总结分析了芒属植物生物学特性、重金属耐性特点、机理及其在矿山废弃地植被恢复中的应用潜力,提出了应用芒属植物进行矿山废弃地植被恢复的基本思路,并对芒属植物的重金属耐性机理及应用的未来研究方向进行展望,以期为利用芒属植物开展矿山废弃地植被恢复提供借鉴.  相似文献   

13.
超富集植物遏蓝菜对重金属吸收、运输和累积的机制   总被引:6,自引:0,他引:6  
遏蓝菜Thlaspi caerulescens可以在其地上部累积大量重金属如锌、镉等,是公认的超富集植物。由于该植物生物量小,不宜直接用于重金属污染的土壤植物修复,而被广泛作为一种模式植物来进行重金属富集机制研究。遏蓝菜对重金属离子的累积大致经过螯合剂解毒、地上部长距离运输以及在液泡中的储存等生理过程。已经发现的植物体内的金属螯合剂——有机酸、氨基酸、植物络合素(PCs)、金属硫蛋白(MT)和尼克烟酰胺NA等,区室化以及长距离运输相关的转运蛋白——ZIP(ZRT/IRTlike protein)、CDF(Cation diffusion facilitator)、Nramp(Natural resistance and macrophage protein)和HMA(Heavy metal ATPase)等家族,以上各种基因、多肽与蛋白等共同参与了植物对金属累积与耐受过程并发挥各自重要的作用。以下主要介绍了遏蓝菜重金属超富集相关的基因、多肽和蛋白,以及它们在重金属螯合作用和运输过程中的功能。  相似文献   

14.
巨大芽孢杆菌对伴矿景天修复镉污染农田土壤的强化作用   总被引:1,自引:0,他引:1  
伴矿景天(Sedum plumbizincicola)是一种Cd/Zn超积累植物,常用于Cd污染土壤的植物修复。巨大芽孢杆菌(Bacillus megaterium)是一种溶磷型细菌,既可以促进植物生长,也可以提高土壤重金属生物有效性,对重金属污染土壤植物修复具有强化作用。本研究采用盆栽试验方法,分析了巨大芽孢杆菌不同接种量(10~60 mL)对伴矿景天修复Cd污染农田土壤效率的影响。结果表明: 在Cd污染农田土壤中接种巨大芽孢杆菌可以提高土壤中Cd的活性,土壤有效态Cd含量较对照(CK)增加15.0%~45.0%。与CK相比,巨大芽孢杆菌提高了伴矿景天地上和地下部的生物量,增幅分别为8.7%~66.7%和13.6%~81.8%,并显著增加了伴矿景天地上部的Cd含量,增幅在29.2%~60.4%。在种植伴矿景天并接种巨大芽孢杆菌条件下,土壤Cd去除率在26.7%~42.9%。这说明接种巨大芽孢杆菌可以促进伴矿景天的生长,增加其Cd含量,从而提高Cd污染农田土壤的修复效率。  相似文献   

15.
Phytostabilization of heavy metals in contaminated soils should be subject to two conditions, the first is the choice plant must be able to stabilize heavy metals in soil, the second is the plant material which produced from the phytostabilization process must be safe and useful to avoid overload on environmental system. A field experiment was conducted out to evaluate the phytostabilization potential of two halophytes species (Atriplex lentiformis and Atriplex undulata). Compost at rates of 0, 15 and 30 ton ha?1 was used to examine its role in plant growth and heavy metals uptake. The high rate of compost (30 ton ha?1) decreased zinc (Zn) concentrations in the leaves of A. lentiformis and A. undulata by 15.8 and 13.0%, while lead (Pb) in the leaves decreased by 37.6 and 35.2% respectively. Despite the extremely high total heavy metals concentrations in the studied soil, plants of Atriplex were able to grow and maintain shoots metals content below the toxic level and the produced plant materials had a high nutritive value compared to the conventional forage crops. Phosphorus (P) and chloride (Cl) in the roots of Atriplex plants play important function in heavy metals phytostabilization mechanism by the two halophytes plants.  相似文献   

16.
伴矿景天Sedum plumbizincicola是我国发现和报道的镉/锌(Cd/Zn)超积累植物,在土壤Cd污染修复方面已开展实际应用。由于超积累植物伴矿景天在不同类型土壤下的生长能力以及对镉锌的去除效果存在较大差异,因此需引入强化修复技术为植物修复提供辅助作用。作为大型土壤动物,蚯蚓对植物生长的促进作用已有较多研究,但其对伴矿景天生长和重金属吸取效率的影响则鲜有报道,为探究赤子爱胜蚓对不同类型土壤种植下的伴矿景天是否具有强化修复效应,以及不同类型土壤下的强化修复效应差异,设计以下盆栽试验。通过在常湿淋溶土(Perudic Luvisols)、水耕人为土(Stagnic Anthrosols)、湿润雏形土(Udic Cambisols)3种土壤上种植伴矿景天、引入赤子爱胜蚓Eisenia foetida,探究赤子爱胜蚓对伴矿景天生长及Cd/Zn吸收性的影响。选取Cd有效性较高、修复潜力较大的水耕人为土(Stagnic Anthrosols)进行第二季盆栽修复试验。第一季修复结果显示,在酸性的常湿淋溶土中,添加赤子爱胜蚓使伴矿景天地上部生物量较对照处理增加了106%,Cd和Zn吸收量分别提高了72.0%和36.0%,且蚯蚓结合伴矿景天的处理修复后土壤Cd有效性进一步降低,其余两种土壤仅添加蚯蚓无强化修复效应;第二季结果显示,同时添加秸秆和蚯蚓,可强化中性的水耕人为土上种植的伴矿景天生长,增大植物地上部生物量和Cd/Zn吸收量。结果表明,添加蚯蚓可增强伴矿景天在常湿淋溶土中的养分吸收,提高生物量,以此强化其修复效应。在水耕人为土中,外加秸秆可作为蚯蚓强化伴矿景天修复的配套技术。  相似文献   

17.
Phytoremediation of mine tailings in temperate and arid environments   总被引:9,自引:0,他引:9  
Phytoremediation is an emerging technology for the remediation of mine tailings, a global problem for which conventional remediation technologies are costly. There are two approaches to phytoremediation of mine tailings, phytoextraction and phytostabilization. Phytoextraction involves translocation of heavy metals from mine tailings to the plant shoot biomass followed by plant harvest, while phytostabilization focuses on establishing a vegetative cap that does not shoot accumulate metals but rather immobilizes metals within the tailings. Phytoextraction is currently limited by low rates of metal removal which is a combination of low biomass production and insufficiently high metal uptake into plant tissue. Phytostabilization is currently limited by a lack of knowledge of the minimum amendments required (e.g., compost, irrigation) to support long-term plant establishment. This review addresses both strategies within the context of two specific climate types: temperate and arid. In temperate environments, mine tailings are a source of metal leachates and acid mine drainage that contaminate nearby waterways. Mine tailings in arid regions are subject to eolian dispersion and water erosion. Examples of phytoremediation within each of these environments are discussed. Current research suggests that phytoextraction, due to high implementation costs and long time frames, will be limited to sites that have high land values and for which metal removal is required. Phytostabilization, due to lower costs and easier implementation, will be a more commonly used approach. Complete restoration of mining sites is an unlikely outcome for either approach.  相似文献   

18.
Metal hyperaccumulators are plants that are capable of extracting metals from the soil and accumulating them to extraordinary concentrations in aboveground tissues (greater than 0.1% dry biomass Ni or Co or greater than 1% dry biomass Zn or Mn). Approximately 400 hyperaccumulator species have been identified, according to the analysis of field-collected specimens. Metal hyperaccumulators are interesting model organisms to study for the development of a phytoremediation technology, the use of plants to remove pollutant metals from soils. However, little is known about the molecular, biochemical, and physiological processes that result in the hyperaccumulator phenotype. We investigated the role of Ni tolerance and transport in Ni hyperaccumulation by Thlaspi goesingense, using plant biomass production, evapotranspiration, and protoplast viability assays, and by following short- and long-term uptake of Ni into roots and shoots. As long as both species (T. goesingense and Thlaspi arvense) were unaffected by Ni toxicity, the rates of Ni translocation from roots to shoots were the same in both the hyper- and nonaccumulator species. Our data suggest that Ni tolerance is sufficient to explain the Ni hyperaccumulator phenotype observed in hydroponically cultured T. goesingense when compared with the Ni-sensitive nonhyperaccumulator T. arvense.  相似文献   

19.
Selenocyanate (SeCN(-)) is a major contaminant in the effluents from some oil refineries, power plants, and in mine drainage water. In this study, we determined the potential of Indian mustard (Brassica juncea) and muskgrass (a macroalga, Chara canescens) for SeCN(-) phytoremediation in upland and wetland situations, respectively. The tolerance of Indian mustard to toxic levels of SeCN(-) was similar to or higher than other toxic forms of Se. Indian mustard treated with 20 microM SeCN(-) removed 30% (w/v) of the Se supplied in 5 d, accumulating 554 and 86 microg of Se g(-1) dry weight in roots and shoots, respectively. Under similar conditions, muskgrass removed approximately 9% (w/v) of the Se supplied as SeCN(-) and accumulated 27 microg of Se g(-1) dry weight. A biochemical pathway for SeCN(-) degradation was proposed for Indian mustard. Indian mustard and muskgrass efficiently degraded SeCN(-) as none of the Se accumulated by either organism remained in this form. Indian mustard accumulated predominantly organic Se, whereas muskgrass contained Se mainly as selenite and organic Se forms. Indian mustard produced volatile Se from SeCN(-) in the form of less toxic dimethylselenide. Se volatilization by Indian mustard accounted for only 0.7% (w/v) of the SeCN(-) removed, likely because the biochemical steps in the production of dimethylselenide from organic Se were rate limiting. Indian mustard is promising for the phytoremediation of SeCN(-) -contaminated soil and water because of its remarkable abilities to phytoextract SeCN(-) and degrade all the accumulated SeCN(-) to other Se forms.  相似文献   

20.
To elucidate the role of low molecular weight chelators in long-distance root-to-shoot transport of heavy metals in Indian mustard, an “off-line” size exclusion high-performance liquid chromatography–graphite furnace atomic absorption spectrometry was developed to investigate heavy metals associated with low molecular weight chelators in xylem saps of Indian mustard (Brassica juncea). The size exclusion chromatogram presented only the peaks with molecular weight for all xylem saps and directly indicated the long-distance transport of phytochelatins (PCs) of Indian mustard under Cd stress. In the absence of Cd stress, only organic acids and inorganic anions participated in the long-distance transport of Cd, but organic acids, inorganic anions, glutathione (GSH), and cysteine might relate to the long-distance transport of Cu or Zn. In the presence of Cd stress, PCs were induced, and Cd ions in xylem saps were associated with the induced PCs. As the Cd levels in nutrient solution increased, more Cd in xylem saps adopted the form of PC–Cd. Although PCs might participate in the long-distance transport of Cd under Cd stress, the majority of Cd was still transported by organic acids and inorganic anions in xylem vessels. Moreover, results indicated the existence of complexation competition for GSH and cysteine between Cd and Cu (or Zn) and complexation competition for Cd between PCs and GSH (or cysteine) in xylem vessels. Our work might be very useful for understanding the mechanism of long-distance transport of heavy metals in hyperaccumulator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号