首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impact of four chromium resistant bacterial strains (S3, S4, S6, and S7) was studied on the different growth parameters of sunflower (Helianthus annuus var SF-187) in chromium free or under chromium stress. Strains used exhibited very high-level resistance to chromate (up to 50 mg ml-1 on nutrient agar and 1-2 mg ml-1 in minimal medium). Application of Cr(VI) salt adversely affected the seed germination, root and shoot length, and fresh weight of seedlings. Bacterial inoculations improved the growth parameters. The effects of Cr(VI) on the different biochemical parameters were also very severe but seedlings inoculated with bacteria showed much improvements as compared to non-inoculated controls. Uptake of Cr(VI) was higher than Cr(III) by the seedlings. Inoculated seedlings contained less chromium than non-inoculated seedlings. Much improvement in the internal region of root and shoot was observed in inoculated plants especially in guard cells.  相似文献   

2.
Summary Nitrifying biofilms were constructed on low density polyester Dacron for the bioremediation of nitrogen from wastewater effluent of a municipal treatment plant. Dacron disks were inoculated with wastewater sludge enriched for 15 days for either ammonia- or nitrite-oxidizing bacteria (AOB or NOB, respectively) and packed into glass bioreactors. Wastewater effluent containing high levels of ammonia, nitrite, and phosphate was collected and fed to inoculated and uninoculated bioreactors. Both inoculated bioreactors showed stable nitrification efficiencies, removing 96 and 76% of the ammonia and 12 and 35% of the nitrite for AOB- and NOB-inoculated bioreactors, respectively. Efficiencies of phosphate removal were similar in both inoculated and uninoculated bioreactors, indicating that nitrifiers were not required for this process. AOB-inoculated bioreactors accumulated nitrite mid-way through the experiment and had low rates of conversion to nitrate, suggesting slow nitrite oxidizer growth. DGGE and sequence analysis of AOB 16S rRNA genes showed enrichment of Nitrosomonas spp. in both inoculated bioreactors, and a dominance of Nitrosospira spp. in non-inoculated bioreactors. This study describes an inexpensive and efficient technology for removing ammonia and nitrite from wastewater effluents of municipal treatment plants before its release to the environment.  相似文献   

3.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

4.
A plant growth-promoting rhizobacterium belonging to the genus Achromobacter was isolated from the oil-seed-rape (Brassica napus) root. Growth promotion bioassays were performed with oilseed rape seedlings in a growth chamber in test tubes containing attapulgite and mineral nutrient solution, containing NO3- as N source. The presence of this Achromobacter strain increased shoot and root dry weight by 22-33% and 6-21%, respectively. Inoculation of young seedlings with the Achromobacter bacteria induced a 100% improvement in NO3- uptake by the whole root system. Observations on the seminal root of seedlings 20 h after inoculation showed that there was an enhancement of both the number and the length of root hairs, compared to non-inoculated seedlings. Electrophysiological measurements of NO3- net flux with ion-selective microelectrodes showed that inoculation resulted in a specific increase of net nitrate flux in a root zone morphologically similar in inoculated and non-inoculated plants. The root area increased due to root hair stimulation by the Achromobacter bacteria, which might have contributed to the improvement of NO3- uptake by the whole root system, together with the enhancement of specific NO3- uptake rate. Moreover, inoculated plants showed increased potassium net influx and proton net efflux. Overall, the data presented suggest that the inoculation of oilseed-rape with the bacteria Achromobacter affects the mineral uptake.  相似文献   

5.
The purpose of this study was to evaluate the remediation potential and disturbance response indicators of Impatiens walleriana exposed to benzene and chromium. Numerous studies over the years have found abundant evidence of the carcinogenicity of benzene and chromium (VI) in humans. Benzene and chromium are two toxic industrial chemicals commonly found together at contaminated sites, and one of the most common management strategies employed in the recovery of sites contaminated by petroleum products and trace metals is in situ remediation. Given that increasing interest has focused on the use of plants as depollution agents, direct injection tests and benzene misting were performed on I. walleriana to evaluate the remediation potential of this species. I. walleriana accumulated hexavalent chromium, mainly in the root system (164.23 mg kg?1), to the detriment of the aerial part (39.72 mg kg?1), and presented visible damage only at the highest concentration (30 mg L?1). Unlike chromium (VI), chromium (III) was retained almost entirely by the soil, leaving it available for removal by phytotechnology. However, after the contamination stopped, I. walleriana responded positively to the detoxification process, recovering its stem stiffness and leaf color. I. walleriana showed visible changes such as leaf chlorosis during the ten days of benzene contamination. When benzene is absorbed by the roots, it is translocated to and accumulated in the plant's aerial part. This mechanism the plant uses ensures its tolerance to the organic compound, enabling the species to survive and reproduce after treatment with benzene. Although I. walleriana accumulates minor amounts of hexavalent chromium in the aerial part, this amount suffices to induce greater oxidative stress and to increase the amount of hydrogen peroxide when compared to that of benzene. It was therefore concluded that I. walleriana is a species that possesses desirable characteristics for phytotechnology.  相似文献   

6.
Four Cr(VI)-reducing bacterial strains (Ochrobactrum intermedium, CrT-2, CrT-3 and CrT-4) previously isolated from chromium-contaminated sites were inoculated on to seeds of sunflower (Helianthus annuus var SF-187), which were germinated and grown along with non-inoculated controls with chromate salts (300 μg CrCl3 or K2CrO4 ml−1). Severe reduction (20%) in seed germination was observed in Cr(VI) stress. Plant height decreased (36%) with Cr(VI) when compared with chromium-free control, while O. intermedium inoculation resulted a 20% increment in this parameter as compared to non-inoculated chromium-free control. CrT-3 inoculation resulted a 69% increment in auxin content as compared to non-inoculated control. O. intermedium caused 30% decrease in chromium uptake in sunflower plant roots under Cr(VI) stress as compared to chromium-free control plants.  相似文献   

7.
 The ability of arbuscular mycorrhizal (AM) fungi from a metal-tolerant plant (Viola calaminaria, violet) to colonise and reduce metal uptake by a non-tolerant plant (Trifolium subterraneum, subterranean clover) in comparison to a metal-tolerant AM fungus isolated from a non-tolerant plant was studied. AM spores from the violet rhizosphere and from violet roots were characterised by polymerase chain reaction (PCR) amplification of the SSU rDNA, and sequencing. Subterranean clover was grown in pots containing a soil supplemented with Cd and Zn salts and inoculated either with a mixture of spores extracted from the violet rhizosphere or with spores of a Cd-tolerant Glomus mosseae P2 (BEG 69), or non-inoculated. The diversity of fungi, including AM fungi, colonising clover roots was assessed and analysed using terminal-restriction fragment length polymorphism. At least four different Glomus species were found in the violet rhizosphere. After 8 weeks in a growth chamber, colonisation of clover roots with spores from the violet rhizosphere increased Cd and Zn concentrations in clover roots without significantly affecting the concentrations of metals in the shoot and plant growth. G. mosseae P2 reduced plant growth and slightly increased the Cd concentration. Only one AM fungus (Glomus b) from the violet rhizosphere colonised clover roots, but other fungi were present. AM fungi from heavy metal-contaminated soils and associated with metal-tolerant plants may be effective in accumulating heavy metals in roots in a non-toxic form. Accepted: 7 July 2000  相似文献   

8.
Metal-contaminated sites can occur naturally in serpentine outcrops or as consequence of anthropogenic activities, such as mining deposits, aerial fallout from smelters and industrial processes. Serpentine outcrops are characterized by high levels of nickel, cobalt and chromium and present a typical vegetation which includes endemisms and plants which also live in uncontaminated soils. These latter metal-tolerant populations provide the opportunity to investigate the first steps in the differentiation of plant populations under severe selection pressure and to select plants to be used in the phytoremediation of industrially contaminated soils. In this report eight populations of Silene paradoxa L. (Caryophyllaceae) growing in copper mine deposits, in serpentine outcrops or in noncontaminated soil in central Italy, were analysed using random amplified polymorphic DNA (RAPD) markers to investigate the pattern of genetic variation. The genetic diversity observed in populations at copper mine deposits was found to be at least as high as that of the neighbouring serpentine populations. Analysis of molecular variance (AMOVA) of the RAPD markers gave high statistical significance to the groupings of populations according: (i) with their geographical location; and (ii) with the metals present in the soil of origin (copper vs. nickel), indicating that RAPD markers detected a polymorphism related to the soil contamination by copper. Finally, two RAPD bands exclusive to copper-tolerant populations were identified.  相似文献   

9.
Population dynamics of the pine wood nematode Bursaphelenchus xylophilus (PWN) and its accompanying bacteria in non-inoculated twigs along with the process of the disease was observed in Japanese black pine, Pinus thunbergii inoculated with PWN. In the non-inoculated twigs, bacteria could be detected when only a few pine needles became yellow. Once most needles had turned yellow or brown, the nematode began to appear and the bacterial populations increased. At the late stages of the disease when the inoculated pine was dying and the needles were totally wilted, the populations of both nematode and bacteria started to increase rapidly. Only a few bacterial species were found at the early stages. As the disease process advanced, the bacterial populations increased rapidly in both population size and variety of the species. However, Pseudomonas fluorescens , P. sp., Pantoea sp. and Sphimgomenas pancimobilis, remained dominant.  相似文献   

10.
Anaerobic ammonium oxidation (ANAMMOX) may provide an effective nitrogen removal pathway for constructed wetlands with low C/N influent. In a study of domestic sewage treatment, anaerobic ammonium oxidation process was identified in the pilot-scale constructed wetland of a bio-ecological process which was composed of a bio-contact oxidation reactor and a horizontal subsurface flow constructed wetland (CW). To investigate the ANAMMOX establishment in the bio-ecological process, two new CWs (planted and unplanted) were developed to be a control for the pre-existing CW. Under operational conditions of DO 2-3 mg/l, HRT 3.5 h for the bio-contact oxidation reactor, HRT 3 days for CWs, and domestic sewage as influent, the process achieved more than 90% TN removal rate after the ANAMMOX was established. The ANAMMOX bacteria on the media of the constructed wetlands were analyzed by specific polymerase chain reaction (PCR) with ANAMMOX specific primer set AMX818F-AMX1066R. The result of the genetic sequencing showed that the PCR product was related to Candidatus B. anammoxidans (AF375994.1) with 98% sequence similarity. Copy numbers of 16S rRNA gene of ANAMMOX bacteria in the pre-existing CW, the new planted CW and new unplanted CW were 3.47 × 105, 3.02 × 105 and 1.30 × 105, respectively. These results demonstrated that the ANAMMOX process was successfully established and operated consistently in the constructed wetlands with a bio-contact oxidation reactor as a pretreatment, and that vegetation positively affected the growth and enrichment of ANAMMOX bacteria.  相似文献   

11.
We used wetland mesocosms (1) to experimentally assess whether inoculating a restored wetland site with vegetation/sediment plugs from a natural wetland would alter the development of invertebrate communities relative to unaided controls and (2) to determine if stocking of a poor invertebrate colonizer could further modify community development beyond that due to simple inoculation. After filling mesocosms with soil from a drained and cultivated former wetland and restoring comparable hydrology, mesocosms were randomly assigned to one of three treatments: control (a reference for unaided community development), inoculated (received three vegetation/sediment cores from a natural wetland), and stocked + inoculated (received three cores and were stocked with a poorly dispersing invertebrate group—gastropods). All mesocosms were placed 100 m from a natural wetland and allowed to colonize for 82 days. Facilitation of invertebrate colonization led to communities in inoculated and stocked + inoculated treatments that contrasted strongly with those in the unaided control treatment. Control mesocosms had the highest taxa richness but the lowest diversity due to high densities and dominance of Tanytarsini (Diptera: Chironomidae). Community structure in inoculated and stocked + inoculated mesocosms was more similar to that of a nearby natural wetland, with abundance more evenly distributed among taxa, leading to diversity that was higher than in the control treatment. Inoculated and stocked + inoculated communities were dominated by non‐aerial invertebrates, whereas control mesocosms were dominated by aerial invertebrates. These results suggest that facilitation of invertebrate recruitment does indeed alter invertebrate community development and that facilitation may lead to a more natural community structure in less time under conditions simulating wetland restoration.  相似文献   

12.
The potential of a plant growth-promoting rhizobacterium, Pseudomonas sp. (strain PsJN), to stimulate the growth and enhancement of the resistance of grapevine (Vitis vinifera L.) transplants to gray mould caused by Botrytis cinerea has been investigated. In vitro inoculation of grapevine plantlets induced a significant plant growth promotion which made them more hardy and vigorous when compared to non-inoculated plantlets. This ability increased upon transplanting. When grown together with B. cinerea, the causal agent of gray mould, significant differences of aggressiveness were observed between the inoculated and non-inoculated plants. The presence of bacteria was accompanied by an induction of plant resistance to the pathogen. The beneficial effect from this plant-microbe association is being postulated.  相似文献   

13.
The accumulation of biotin-vitamers in the culture media of a large number of microorganisms (about 700 strains) was studied. The contents of the biotin-vitamers were quantitatively determined by microbiological assays with Lactobacillus arabinosus and Saccharomyces cerevisiae.

It was found that large amounts of biotin-vitamers were accumulated by various microorganisms such as Streptomyces, molds and bacteria, and that the yield of biotin-vitamers was enhanced by the addition of pimelic acid or azelaic acid to the media. It was also found that the main portion of the vitamers accumulated by many microorganisms did not support the growth of Lactobacillus arabinosus, while it did support that of Saccharomyces cerevisiae. The small amounts of true biotin were observed in the culture media of various Streptomyces and molds, but hardly in the culture media of bacteria.

The identification of biotin-vitamers accumulated by various microorganisms is described, and the distribution of the vitamers in microorganisms is also described.

The results presented in this paper show that the main component of the vitamers accumulated by many microorganisms is identified as desthiobiotin by anion exchange column chromatography, paper chromatography and chemical analysis. Small amounts of fraction B (unidentified vitamers) and Fraction D (biotin) were also detected in the culture media of various molds and Streptomyces. However, these fractions were not observed in the culture media of any bacteria tested.

It was also found that large amounts of an unknown biotin-vitamer was accumulated by various bacteria. The vitamer was avidin-uncombinable, and, from the paper electrophoretic studies, it was assumed that the vitamer might be an analogue of pelargonic acid.  相似文献   

14.
A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.  相似文献   

15.
The influence of Pleurotus ostreatus inoculation on wood degradation and on fungal community structure was studied. The experiments were performed on an organically poor fly ash deposit covered with a 10 cm layer of beech wood chips inoculated with P. ostreatus isolate ZIM76. Compared to non-inoculated wood chips, inoculation increased the temperatures and relative humidities and, in the first 6 months, accelerated Klason lignin degradation by 9% and also, after 17 months, increased iron translocation into wood chips by 30%. After 6 months, PCR-DGGE showed 22-28 and 13-21 fungal taxa in non-inoculated and P. ostreatus-inoculated beech chips, respectively. The differences in number of taxa and in the fungal community structure (based on Dice coefficient) between non-inoculated and inoculated wood chips diminished with time. The results indicate that the naturally occurring processes of wood degradation are as efficient as those occurring in sites inoculated with P. ostreatus.  相似文献   

16.
Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. The use of decentralized wastewater treatment systems has applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a submerged flow constructed wetland (CW) and a sand filter to remove bacterial and viral pathogens from wastewater streams was evaluated in this study Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral breakthrough numbers in the sand filter and CW were similar with a Spearman Rank correlation of 0.8 (P<0.05). In the CW, the virus exhibited almost a 3-log reduction, while in the sand filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses was as expected dependent on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions.  相似文献   

17.
The study of metal-tolerant bacteria is important for bioremediation of contaminated environments and development of green technologies for material synthesis due to their potential to transform toxic metal ions into less toxic compounds by mechanisms such as reduction, oxidation and/or sequestration. In this study, we report the isolation of seven lead-tolerant bacteria from a metal-contaminated site at Zacatecas, México. The bacteria were identified as members of the Staphylococcus and Bacillus genera by microscopic, biochemical and 16S rDNA analyses. Minimal inhibitory concentration of these isolates was established between 4.5 and 7.0 mM of Pb(NO3)2 in solid and 1.0–4.0 mM of Pb(NO3)2 in liquid media. A quantitative analysis of the lead associated to bacterial biomass in growing cultures, revealed that the percentage of lead associated to biomass was between 1 and 37% in the PbT isolates. A mechanism of complexation/biosorption of lead ions as inorganic phosphates (lead hydroxyapatite and pyromorphite) in bacterial biomass, was determined by Fourier transform infrared spectroscopy and X-ray diffraction analyses. Thus, the ability of the lead-tolerant isolates to transform lead ions into stable and highly insoluble lead minerals make them potentially useful for immobilization of lead in mining waste.  相似文献   

18.
Phytoextraction is a technique using a hyperaccumulator to remove heavy metals from soil. The efficiency of heavy metal uptake can be enhanced by the inoculation of endophytes. In this study, we isolated and identified 23 endophytes from Chromolaena odorata, a cadmium (Cd) hyperaccumulator that consisted of 19 bacteria, 2 actinomycetes and 2 fungi. All bacteria and fungi could produce at least 1 plant growth promoting factors. However, only 4 bacterial isolates; Paenibacillus sp. SB12, Bacillus sp. SB31, Bacillus sp. LB51, and Alcaligenes sp. RB54 showed the highest minimum inhibitory concentration (MIC) value (2.9 mM), followed by Exiguobacterium sp.RB51 (1.7 mM). Then, these 5 high-MIC bacteria and 1 low-MIC bacterium, Bacillus sp. LB15 were inoculated onto sunflower grown in soil supplemented with 250 mg/kg of Cd. After 60 days, all inoculated plants accumulated significantly higher Cd concentration than the non-inoculated counterparts, and those inoculated with strain LB51 showed the highest Cd accumulation and growth. Interestingly, strain LB15 with low MIC also enhanced Cd accumulation in plants. The results suggest that these bacteria, particularly strain LB51, could be applied to improve Cd accumulation in plants, and that bacteria with low MIC also have the potential to enhance the efficiency of phytoextraction.  相似文献   

19.
Murashige and Skoog’s (MS) medium was supplemented with supernatant of Halomonas desiderata RE1 in different combinations to observe the impact of bacterial auxin on in vitro growth of Brassica oleracea L. Three groups of combinations MS + BS (Bacterial supernatant), MS + BS + 10% CW (coconut water) and MS + BS + 4 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) were considered. Different amounts of BS used in each combination were 50, 100, 150 and 200 μl in 5 ml MS medium. Media combinations inoculated with seeds, internodal explants and callus of B. oleracea L. were incubated in a growth chamber at 25 ± 1°C and exposed to 16-h cool fluorescent light. Seeds inoculated on MS + BS and MS + BS + 10% CW, shoot elongation was observed over control whereas this response was suppressed in 2,4-D-containing media. In explants inoculated on MS + BS, MS + BS + 10% CW and MS + BS + 4 mg l−1 2,4-D different responses such as callus induction, adventitious shoot induction and hypertrophy were observed at different supernatant treatments. In callus inoculation, callus proliferation was observed in most of the treatments at different media combinations.  相似文献   

20.
A total of 85 chromate-resistant bacteria were isolated from the rhizosphere of water hyacinth grown in Mariout Lake, Egypt, as well as the sediment and water of this habitat. Only 4 (11%), 2 (8%), and 2 (8%) of isolates from each of the environments, respectively, were able to tolerate 200 mg Cr (VI) L(-1). When these eight isolates were tested for their ability to tolerate other metals or to reduce chromate, they were shown to also be resistant to Zn, Mn, and Pb, and to display different degrees of chromate reduction (28% to 95%) under aerobic conditions. The isolates with the higher chromate reduction rates from 42% to 95%, (RA1, RA2, RA3, RA5, RA7, and RA8) were genetically diverse according to RAPD analysis using four differentprimers. Bacterial isolates RA1, RA2, RA3, RAS, and RA8 had 16 S rRNA gene sequences that were most similar to Pseudomonas diminuta, Brevundimonas diminuta, Nitrobacteria irancium, Ochrobactrum anthropi, and Bacillus cereus, respectively. Water hyacinth inoculated with RA5 and RA8 increased Mn accumulation in roots by 2.4- and 1.2-fold, respectively, compared to uninoculated controls. The highest concentrations of Cr (0.4 g kg(-1)) and Zn (0.18 g kg(-1)) were accumulated in aerial portions of water hyacinth inoculated with RA3. Plants inoculated with RA1, RA2, RA3, RA5, RA7, and RA8 had 7-, 11-, 24-, 29-, 35-, and 21-fold, respectively, higher Cr concentrations in roots compared to the control. These bacterial isolates are potential candidates in phytoremediation for chromium removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号