首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg?1) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil electric conductivity (EC), organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities. Biomass and all growth parameters (except the shoot/root ratio) of spinach showed a positive response to sewage sludge applications up to 40 g kg?1 compared to the control soil. Increasing the sewage sludge amendment rate caused an increase in all heavy metal concentrations (except lead) in spinach root and shoot. However, all heavy metal concentrations (except chromium and iron) were in the normal range and did not reach the phytotoxic levels. The spinach was characterized by a bioaccumulation factor <1.0 for all heavy metals. The translocation factor (TF) varied among the heavy metals as well as among the sewage sludge amendment rates. Spinach translocation mechanisms clearly restricted heavy metal transport to the edible parts (shoot) because the TFs for all heavy metals (except zinc) were <1.0. In conclusion, sewage sludge used in the present study can be considered for use as a fertilizer in spinach production systems in Saudi Arabia, and the results can serve as a management method for sewage sludge.  相似文献   

2.
Glasshouse and field studies showed that Vetiver grass can produce high biomass (>100t/tha?1 year?1) and highly tolerate extreme climatic variation such as prolonged drought, flood, submergence and temperatures (?15°–55°C), soils high in acidity and alkalinity (pH 3.3–9.5), high levels of Al (85% saturation percentage), Mn (578 mg kg?1), soil salinity (ECse 47.5 dS m?1), sodicity (ESP 48%), and a wide range of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn). Vetiver can accumulate heavy metals, particularly lead (shoot 0.4% and root 1%) and zinc (shoot and root 1%). The majority of heavy metals are accumulated in roots thus suitable for phytostabilization, and for phytoextraction with addition of chelating agents. Vetiver can also absorb and promote biodegradation of organic wastes (2,4,6-trinitroluene, phenol, ethidium bromide, benzo[a]pyrene, atrazine). Although Vetiver is not as effective as some other species in heavy metal accumulation, very few plants in the literature have a wide range of tolerance to extremely adverse conditions of climate and growing medium (soil, sand, and tailings) combined into one plant as vetiver. All these special characteristics make vetiver a choice plant for phytoremediation of heavy metals and organic wastes.  相似文献   

3.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

4.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

5.
A field experiment was conducted to observe the effect of TS amendments on soil enzymes and phytoremediation potential of two economically important cultivars of geranium. Different doses of TS were applied in soil to examine threshold limit of HMs where geranium cultivars can be grown successfully in contaminated sites. Treatment variation significantly affected pH, EC, OC, N, P, K and HM content in soil after 50 days of incubation. After harvest, both cultivars were examined to assess the impact of various treatments on their fresh herb, dry matter, essential oil yield and HM accumulation. C/G ratio close to 1 was observed at 50 tha?1 sludge treatment in both cultivars. Urease and β-glucosidase activities in soil were maximum at 50 tha?1 whereas dehydrogenase and phosphatase activities were maximum at 100 tha?1 in both cultivars. β-glucosidase, acid and alkaline phosphatase, urease and dehydrogenase activities were relatively high after 85 days over 45 days in both cultivars. Maximum metal uptake was found in roots of cv. Bourbon followed by leaves. Geranium was observed to be a good candidate for phytoremediation as it mitigates metal toxicity by root absorption and cv. Bourbon is better candidate for the same.  相似文献   

6.
The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.  相似文献   

7.
In this investigation, we report on the treatment of tannery wastewater using microalgae Chlorella species to produce lipid and fatty acid as well as changes in antioxidant metabolism during the treatment. The variation in growth, production of pigments, antioxidant metabolism, lipid and fatty acids, and nutrient removal from wastewater during the remediation were observed. Surprisingly, a profuse growth was found in 50% diluted tannery wastewater (TW), which supported to accumulate high yield of lipid (18.5%) and unsaturated fatty acids (50.05%). The antioxidant activity of microalgae in both the concentrations (50% and 100% TW) were viz., lipid peroxidation 1.6 ± 0.1 and 2.3 ± 0.02nmol MDA mg?1 protein, SOD 10.3 ± 0.4 and 15.7 ± 0.9 U mg?1 protein, CAT 0.17 ± 0.036 and 0.52 ± 0.06 U mg?1 protein, and APX 7.2 ± 0.8 and 11.2 ± 09 U mg?1 protein respectively, which point out that the free radical scavenging mechanism against heavy metal stress. Maximum phycoremediation of heavy metals observed from both concentrations during the healthy growth period were Cr – 73.1, 45.7%, Cu – 90.4, 78.1%, Pb – 92.1, 52.2%, and Zn – 81.2, 44.6%, respectively. This study proved the potential use of Chlorella for heavy metal and nutrient removal from tannery wastewater. Moreover, an unaffected growth with high antioxidant activity of this species promises a sustainable lipid and fatty acid contents for biofuel production.  相似文献   

8.
The aim of the study was to evaluate the efficacy of the multiflora rose var. “Jatar” (Rosa multiflora Thunb. ex Murray) and the Virginia fanpetals (Sida hermaphrodita Rusby) to phytoextract heavy metals from municipal sewage sludge. The 6-year field experiment involved four levels of fertilization with sewage sludge at doses of 0, 10, 20, 40, and 60 Mg DM (Dry Mass) sludge ha?1. The increasing doses of sewage sludge were found to significantly increase the yield of multiflora rose and Virginia fanpetals biomass. They also significantly increased the content of heavy metals in these plants. The highest uptake of heavy metals by the multiflora rose and Virginia fanpetals crops was recorded at the fertilization dose of 60 Mg DM ? ha?1. Our investigations show that the Virginia fanpetals was more efficient in the phytoextraction of Cr, Ni, Cu, Zn, and Cd from the sewage sludge than the multiflora rose, due to the greater yields and higher heavy metal uptake by the former plant. In turn, the multiflora rose phytoextracted greater amounts of Pb from the sewage sludge. The analyses indicate that the Virginia fanpetals can be used for phytoremediation (phytoextraction) of heavy metals contained in sewage sludge.  相似文献   

9.

Background and Aims

Metal (e.g. Cd and Pb) pollution in agricultural soils and crops have aroused considerable attention in recent years. This study aimed to evaluate the effects of ROL and Fe plaque on Cd and Pb accumulation and distribution in the rice plant.

Methods

A rhizobag experiment was employed to investigate the correlations among radial oxygen loss (ROL), Fe plaque formation and uptake and distribution of Cd and Pb in 25 rice cultivars.

Results

Large differences between the cultivars were found in rates of ROL (1.55 to 6.88 mmol O2 kg?1 root d.w. h?1), Fe plaque formation (Fe: 6,117–48,167 mg kg?1; Mn: 127–1,089 mg kg?1), heavy metals in shoot (Cd: 0.13–0.35 mg kg?1; Pb: 4.8–8.1 mg kg?1) and root tissues (Cd: 1.1–3.5 mg kg?1; Pb: 45–199 mg kg?1), and in Fe plaque (Cd: 0.54–2.6 mg kg?1; Pb: 102–708 mg kg?1). Rates of ROL were positively correlated with Fe plaque formation and metal deposition on root surfaces, but negatively correlated with metal transfer factors of root/plaque and distributions in shoot and root tissues.

Conclusions

ROL-induced Fe plaque promotes metal deposition on to root surfaces, leading to a limitation of Cd and Pb transfer and distribution in rice plant tissues.  相似文献   

10.
This study was conducted to assess the pollutant uptake capability of water lettuce (Pistia stratiotes L.) in terms of bioaccumulation, enrichment, and translocation of heavy metals grown in sugar mill effluent. Results showed that the maximum fresh weight (328.48 ± 2.04 gm kg?1), total chlorophyll content (2.13 ± 2.03 mg g?1 fwt), and relative growth rate, RGR (11.89 gg?1 d?1) of P. stratiotes were observed at 75% concentration of the sugar mill effluent after 60 days of phytoremediation experiment. The bioaccumulation factor (BF) of different heavy metals was greater than 1 with 50% and 75% concentrations of sugar mill effluent and this indicated that P. stratiotes was hyperaccumulator or phytoremediator of these metals. The enrichment factor (EF < 2 for Cu, Fe, Cr, Pb, Zn, and Mn) and (EF > 2 for Cd) indicated that P. stratiotes mineral enrichment deficient and it moderately enriched the different heavy metals. Moreover, translocation factor (TF) was less than 1 which indicated the low mobility of metals in different parts (root and leaves) of P. stratiotes after phytoremediation. Therefore, P. stratiotes can be used for phytotreatment of sugar mill effluent up to 50% to 75% concentrations and considered as hyperaccumulator aquatic plant for different heavy metals and other pollutants from the contaminated effluents.  相似文献   

11.
Abstract

Phytoremediation of heavy metal contaminated soils represents a promising technique and salt-tolerant hyperaccumulators for multiple metals are the need of time. Therefore, phytoremediation potential of four salt-tolerant grass species [Dhab (Desmostachya bipinnata), Kallar (Leptochloa fusca), Para (Brachiaria mutica) and Sporobolus (Sporobolus arabicus Boiss)] was evaluated for cadmium (Cd) and lead (Pb) in a hydroponic study. The plants were harvested after a growth period of 3 months in a nutrient solution containing different levels of Cd (0, 5, and 25?mg?L?1) and Pb (0, 25, and 125?mg L?1). Results indicated that Dhab grass showed the highest root and shoot dry matter yield followed by Para, Kallar and Sporobolus grass irrespective of metal or its level under which they were grown. All the grass species showed considerable Cd-accumulating potential with an accumulation of >150?mg kg?1of shoot dry matter at a higher level of Cd-contamination (25?mg?L?1). While in case of shoot Pb-accumulation only Para grass performed well and accumulated Pb >1000?mg kg?1 of shoot dry matter at the higher level of Pb-contamination (125?mg?L?1). Moreover, Para and Dhab grasses performed better for shoot Cd-uptake, while only Para grass showed promising shoot Pb uptake potential. In conclusion, these grass species could be penitentially used for phytoremediation of salt-affected Cd and Pb contaminated soils.  相似文献   

12.
Iris pseudacorus L. (yellow flag) is a wide-use wetland plant for constructed wetlands for removing metals from wastewater. This study aims to understand effects of root iron plaque on sequestration and translocation of Cr and Ni in yellow flag seedlings using a hydroponic experiment. Yellow flag seedlings (4-week-old seedlings with 4–6 leaves) with or without iron plaque induction (at 50 mg Fe2+ L?1 for 72 hours) were spiked for 6 days in the Hoagland solution with Cr or Ni at 0.5, 5, and 50 mg L?1, equivalent to 1, 10, 100 times of thresholds of surface water quality, respectively. Results indicated that root iron plaque significantly reduced translocation of Cr and Ni to root but increased from root to shoot. Root iron plaque formation counteracted Cr toxicity to yellow flag seedlings while the control showed Cr toxicity to root at 5 mg L?1and to shoot at 50 mg L?1 with significant biomass loss. Neither Ni exposures caused significant biomass loss nor root iron plaque formation significantly changed Ni distribution among plant parts. Our study suggests that root iron plaque effects on metal sequestration and translocation in yellow flag seedlings were metal-dependent.  相似文献   

13.
The present study was conducted in a potted experiment to examine the effects of chromium pollution on absorption of mineral nutrients and some morpho-physiological attributes of two sunflower (Helianthus annuus L.) hybrids (FH-331 and FH-259) in the presence and absence of ethylene diamine tetra acetic acid (EDTA) used as a chelating agent. Four concentrations of chromium (Cr3+) i.e., 0, 20, 30 and 40 mg kg?1 with and without 0.3 g kg?1, EDTA as chelating agent were applied to 25-day-old sunflower plants. A gradually decreasing trend in absorption of all minerals and other parameters studied were observed. Different treatments of Cr3+ as well as Cr3+ and EDTA significantly reduced root and shoot fresh weight; however, root, shoot and achene Cr3+ contents of two sunflowers hybrids under higher chromium and EDTA stress varied significantly whereas movement of Cr3+ contents to leaves was non-significant. Absorption of Na+, K+, N2 and P through roots and shoots significantly reduced with increasing concentration of Cr3+ treatments. In fact addition of EDTA to the medium further enhanced the toxicity of chromium.  相似文献   

14.
The aim of this study was to assess the suitability of sewage sludge use for mung bean {Vigna radiata L. cv. Malviya janpriya (HUM 6)} plants by evaluating the growth, and yield responses, nutritional quality and heavy metal accumulation at different sewage sludge amendment (SSA) rates. Sewage sludge amendment modified the physico-chemical properties of soil by decreasing pH and increasing organic carbon, total iron and heavy metals. Plants showed increments in shoot length, leaf area and total biomass at all SSA rates, but root length increased only up to 9 kg m?2 SSA rates. Plants grown at different SSA rates showed higher nutrients and heavy metals in seeds, but protein content declined. Sewage sludge application caused about 39, 76 and 60% more yield at 6, 9 and 12 kg m?2 treatments, respectively. Concentrations of Pb and Ni in grains were higher than the Indian permissible limits at and above 9 kg m?2 and of Cd at 12 kg m?2 SSA rates.The study suggests that SSA at a rate lower than 9 kg m?2 may be recommended due to better fertilizing value for soil and promoting mung bean yield. Higher rate of sewage sludge application leads to elevated accumulation of heavy metals in seeds, which limits the suitability for human consumption.  相似文献   

15.
Phycoremediation ability of microalgae namely Oscillatoria acuminate and Phormidium irrigum were validated against the heavy metals from tannery effluent of Ranipet industrial area. The microalgae species were cultured in media containing tannery effluent in two different volumes and the parameters like specific growth rate, protein content and antioxidant enzyme activities were estimated. FTIR spectroscopy was carried out to know the sorption sites interaction. The antioxidant enzymes namely superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) contents were increased in microalgae species indicating the free radical scavenging mechanism under heavy metal stress. SOD activity was 0.502 and 0.378 units/gram fresh weight, CAT activity was 1.36 and 0.256 units/gram fresh weight, GSH activity was 1.286 and 1.232 units/gram fresh weight respectively in the effluent treated microalgae species. Bio sorption efficiency for Oscillatoria acuminate and Phormidium irrigum was 90% and 80% respectively. FTIR analysis revealed the interaction of microalgae species with chemical groups present in the tannery effluent. From the results, the microalgae Oscillatoria acuminate possess high antioxidant activity and bio sorption efficiency when compared to Phormidium irrigum and hence considered useful in treating heavy metals contaminated effluents.  相似文献   

16.
This study reports a comparative account of metal accumulation in the trees, grasses, and flowering plants from agricultural fields contaminated with tannery wastewater. Soil physico-chemical properties along the pollution gradient and soil depth were analyzed. Monitoring and assessment of the plants growing on contaminated sites revealed that the accumulation of Cr in the aboveground part of the trees ranged from 1.87 to 34.44 μg g?1 dw with maximum concentration in Dendro-calamus strictus (34.44 μg g?1 dw). Chrysanthemum coronarium and Tagetes erecta showed better accumulation of Cr than other flowering plants. Separate field experiments were conducted on the contaminated area. The shoots of Vetiveria zizanoides (532 mg 4 m?2) and Cymbopogan winterianus (535.46 mg 4 m?2) have shown almost similar removal potential of Cr, with maximum removal potential in the roots of C. winterianus (1206.43 mg 4 m?2). Seasonal flowering plants (i.e., C. coronarium) have shown better accumulation of Cr than T. erecta. The results indicate that the plants of V. zizanoides, C. coronarium, and C. winterianus are suitable for phytoremediation of contaminated sites and trees can successfully be used for phytostabilization.  相似文献   

17.
The tannery industries are the reason of major environmental concerns as they release toxic heavy metals, like chromium, in rivers posing risks of genotoxicity and mutagenicity in aquatic organism and indirectly in humans through food chain. In the present analysis, the freshwater inhabitant fishes of River Ganges, viz., Labeo calbasu, Puntius sophore, and Mystus vittatus, were examined for assessing the genotoxic, mutagenic, and bioaccumulative potentials of tannery effluents. For genotoxicity assessment, the blood and gill samples of fishes prevailed from polluted sites of River Ganges adjoining Kanpur city were utilized for comet assay and micronucleus test. The present investigation revealed the presence of significantly (p < 0.05) higher micronuclei induction and % tail DNA in erythrocytes and gill cells of the fishes collected from the polluted sites. The bioaccumulation studies revealed chromium concentration in muscle (0.89 µg/g) and gill tissues (0.24 µg/g) of L. calbasu; muscle (0.44 µg/g) and gills (1.23 µg/g) of P. sophore; and muscle (0.9617 µg/g) and gills (0.3628 µg/g) of M. vittatus, quite higher than the permissible limits of the World Health Organization. Consequently, the present study indicates strongly that River Ganges is contaminated with harmful tannery pollutants causing genotoxicity and mutagenicity in freshwater fishes.  相似文献   

18.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   

19.
Greenhouse and in-situ field experiments were used to determine the potential for phytoextraction to remediate soil contaminated with Cd from municipal solid waste (MSW) and sewage sludge (SS) compost application at a Peterborough (Canada) site. For the greenhouse experiment, one native (Chenopodium album) and three naturalized (Poa compressa, Brassica juncea, Helianthus annuus) plant species were planted in soil containing no detectable Cd (<1.0 μg·g?1), and soil from the site containing low (5.0 ± 0.3 μg·g?1 Cd), and high (16.5 ± 1.2 μg?g?1 Cd) Cd concentrations. Plant uptake was low (root BAFs ≤0.5) for all species except P. compressa in the low Cd treatment (BAF 1.0). Only B. juncea accumulated Cd in its shoots, though uptake was low (BAF ≤0.3). For the field experiment, B. juncea was planted in-situ in areas of low and high Cd concentrations. Brassica juncea Cd uptake was low (root and shoot BAFs <0.2) in both treatments. Sequential extraction analysis indicated that Cd is retained primarily by low bioavailability soil fractions, and phytoextraction is therefore not feasible at this site. Though low Cd bioavailability has negative implications for Cd phytoextraction from MSW/SS compost-based soils, it may limit receptor exposure to Cd sufficiently to eliminate the potential for risk at this site.  相似文献   

20.
The objective of this study was to investigate Cd phytoremediation ability of Indian mustard, Brassica juncea. The study was conducted with 25, 50, 100, 200 and 400 mg Kg?1 CdCl2 in laboratory for 21 days and Cd concentrations in the root, shoot and leaf tissues were estimated by atomic absorption spectroscopy. The plant showed high Cd tolerance of up to 400 mg Kg?1 but there was a general trend of decline in the root and shoot length, tissue biomass, leaf chlorophyll and carotenoid contents. The tolerance index (TI) of plants were calculated taking both root and shoot lengths as variables. The maximum tolerance (TI shoot = 87.4 % and TI root = 89.6 %) to Cd toxicity was observed at 25 mg Kg?1, which progressively decreased with increase in dose. The highest shoot (10791 μg g?1 dry wt) and root (9602 μg g?1 dry wt) Cd accumulation was achieved at 200 mg kg?1 Cd treatment and the maximum leaf Cd accumulation was 10071.6 μg g?1 dry wt achieved at 100 mg Kg?1 Cd, after 21 days of treatment. The enrichment coefficient and root to shoot translocation factor were calculated, which, pointed towards the suitability of Indian mustard for removing Cd from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号