首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of phosphate starvation on growth and acid phosphatases (APases) localization and activity in oat tissues was investigated. Oat cultivars (Avena sativa L.??Arab, Polar, Szakal) were grown for 1?C3?weeks in complete nutrient medium (+P) and without phosphate (?P). Pi concentration in plant tissues decreased strongly after culturing on ?P medium. Pi deficit reduced shoot growth, stimulated root elongation and increased ratio of root/shoot in all oat cultivars. Pi deficit had a greater impact on growth of oat cv. Polar than other varieties. A decrease in the internal Pi status led to an increase of acid phosphatase activities in extracts from shoots and roots, and in root exudates. The highest activity of secreted APases was observed for oat cv. Arab, during the third week of growth under Pi-deficient conditions. The activity of extracellular APase was high in young, growing zones of roots of ?P plants. Histochemical visualization indicated high activity of APases in the epidermis and vascular tissues of ?P plants. Pi deficiency increased intracellular APase activity in shoot mainly in oat cv. Polar, whereas APase activity in roots was the highest in oat cv. Szakal. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoform(s) may be affected by Pi deficiency. Three major APase isoforms were detected in all oat plants; one was strongly induced by Pi deficit. The studied oat cultivars differed in terms of acclimation to deficiency of phosphate??used various pools of APases to acquire Pi from external or internal sources.  相似文献   

2.
The in vitro competency of mature cereal embryos (winter, spring and durum wheats, oat, barley and triticale) was assessed for direct multiple shoot production on culture media containing the plant growth regulators, thidiazuron (TDZ) and/or 6–benzylaminopurine (BAP). Mature embryos of CDC Dancer oat showed the best response, with 69 shoots per explant on culture medium containing a combination of 4.5 μM TDZ and 4.4 μM BAP. TDZ alone induced about 16 shoots per explant from the oat. Among the wheat genotypes, durum wheat showed the most number of shoots (35) per explant on culture medium containing 4.5 μM of TDZ and 4.4 μM of BAP. With TDZ alone, shoot regeneration for durum wheat ranged from 27–32 shoots per explant. The regeneration frequency from the three winter wheat genotypes ranged from 11–25 shoots per explant and was highest on culture medium containing 9.1 μM TDZ and 4.4 μM BAP. The latter culture medium was also effective for a triticale genotype, inducing 34 shoots per explant. The regeneration from mature embryos of barley genotypes ranged from 5–9 shoots per explant. The mature embryos of all the cereals tested could be used for in vitro regeneration with TDZ and TDZ+BAP combinations.  相似文献   

3.
The content of the minor class of phospholipids, N-acylphosphatidylethanolamines (NAPEs) in mature seeds of cultivated plants: kidney bean (Phaseolus vulgaris L.), soybean (Glycine max (L.) Merr.), soft spring wheat (Triticum aestivum L. emend. Fiori et Paol), barley (Hordeum vulgare L.), and oat (Avena sativa L.), and the products of technological processing of grain cultures (floor, bran) was studied. Reliable NAPE identification was performed by a comparison of their chromatographic mobility with the marker NAPE sample from wheat flour and synthetic phosphatidylmethanol, and also using specific reagents. Kidney bean cv. Shchedraya seeds contained the highest amount of NAPEs. In legumes, the content of NAPEs varied not only in different species but also in different cultivars of a single species. In cereals, the highest NAPE content was detected in the barley seeds and best quality wheat flour. The content of NAPEs in cereal seeds was less variable than in legumes. NAPE quantification showed that accumulation of this phospholipid class occurred in parallel with accumulation of total phospholipids in seeds. The relation between NAPE content and the processes of seed development and their lipid composition is discussed. The seeds and products best suitable for NAPE isolation are recommended.  相似文献   

4.
Traditionally, the oat crop (Avena sativa) has been neglected in a number of respects, cultivated in cropping areas not optimal for wheat, barley or maize. In recent years the interest in oats has increased, particularly because of its dietary benefits and therapeutic potential for human health. The uniqueness and advantages of naked oats over other popular cereals, due to its potentially valuable nutritional composition, have been well studied and reported, opening new market “niches” for oats. Despite the well‐documented benefits, the status of the oat crop is still fragile, due to many reasons. The area cultivated for the oat crop is much less compared with other cereals, and therefore commercial efforts in oat breeding are less. Oat groat yield is lower than other cereals such as wheat and the nutritious uniqueness has not been reflected in agreeable market prices. The same price still exists for both naked and conventional/covered oats in the world grain market. The absence of visible market competitiveness, and some of the oat biological drawbacks, including low grain yield, keeps the oat crop as a lower profitability minor crop. This review is intended to analyse and summarise main achievements and challenges in oat genetics, agronomy and phytopathology to find possible ways of oat improvement and future perspectives for oat breeding.  相似文献   

5.
Several plant growth regulators (PGRs) commonly used in practicalfarming to restrict shoot height and control lodging were examined for theirimpact on root growth in naturally short or tall cultivars of barley (cvs.Kymppi and Saana), oat (cvs. Veli and Pal), and wheat (cvs. Mahti and Tjalve).The possible involvement of ethylene in the responses was also examined. Shootswere sprayed at the two-leaf stage with the gibberellin biosynthesis inhibitorsCycocel (chlormequat chloride) (CCC) or Moddus (Trinexapac-ethyl) (TE), or withthe ethylene-releasing agent Cerone (ethephon) (ETH) at 0, 0.1, 1, 10 or 50times the recommended agricultural rate (RR). Root elongation and ethyleneproduction by roots or shoots were unaffected by CCC at all application ratesorby TE at ×0.1 or ×1.0 RR. At ×10 and ×50 RR, TE wasinhibitory to root extension but did not increase ethylene biosynthesis bytheseroots or the shoots. ETH at ×0.1 or ×1.0 RR did not affect rootextension or ethylene production in roots or shoots. At all higher rates ofapplication ETH stimulated ethylene production strongly in shoots and roots ofall three species, while root elongation was retarded severely in barley,moderately in oat and only slightly in wheat. These differences in elongationresponse are attributed to differences in sensitivity to ethylene released byethephon. Accordingly, root elongation in wheat was only slightly affected whenethylene gas was supplied at concentrations up to 100 ppm for 3d. In contrast, root elongation in barley was strongly inhibitedbyethylene, with oat demonstrating an intermediate responsiveness.  相似文献   

6.
In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought.One spring barley(Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars(Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil‐column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley(47%) than durum wheat(30%, Hourani). Root‐to‐shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response todrought but decreased for barley. The critical root length density(RLD) and root volume density(RVD) for 90% available water capture for wheat were similar to(cv. Hourani) or lower than(cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.  相似文献   

7.
Male Sterility and Anther Wall Structure in Copper-deficient Plants   总被引:5,自引:0,他引:5  
DELL  B. 《Annals of botany》1981,48(5):599-608
Anther development and pollen sterility were followed in plantsof wheat, oat, barley, sweetcorn, sunflower, petunia and subterraneumclover grown at a range of copper supplies. Copper-deficientplants had increased pollen sterility. Lignified wall thickenings were reduced or absent in the endotheciaof anthers from Cu-deficient plants. Reduced seed set may resultboth from reduced pollen fertility or failure of the stomiato rupture due to decreased lignification of anther walls. Triticum aestivum L., wheat, Hordeum vulgare L., barley, Avena sativa L., oat, Zea mays L., corn, sweetcorn, maize, Helianthus annuus L., sunflower, Petunia hybrida L., Trifolium subterraneum L., subterranean clover, male sterility, anther development, copper deficiency  相似文献   

8.
The distribution of phytochrome in several etiolated grass seedlings (Avena saliva L., cvs. Garry and Newton; Secale cereale L., cv. Balbo; Hordeum vulgare L., cv. Harrison; Oryza sativa L; Zea mays L., cv. Golden Cross) was determined, by an indirect antibody-labelling method employing peroxidase as the ultimate label. Although the pattern of phytochrome distribution in etiolated shoots varies widely, it is nevertheless clear that, with the exception of corn, in which phytochrome is relatively uniformly distributed, the distribution of phytochrome is highly specific with respect both to organs and to cell types within an organ for a given species. Oat, rye, barley, and rice shoots all have high concentrations of phytochrome near the tips of their coleoptiles, as well as near the shoot apex itself. Rice, barley, and rye also have high concentrations of phytochrome in their leaf bases, but oat leaves are almost totally devoid of measurable phytochrome. An association of phytochrome with vascular tissue often occurs and is most pronounced in the rice shoot. Dark-grown roots were found to have high levels of phytochrome only in the root caps, with lesser amounts, if any, observed in other parts of the root.  相似文献   

9.
The influences of nutrient supply and plant growth regulators on the phytotoxicity of imazamethabenz in wild oat (Avena fatua L.) were evaluated in the greenhouse. Wild oat plants supplied with half-strength rather than one-eighth-strength Hoagland solution were more susceptible to imazamethabenz, showing greater growth reduction in main shoot and tillers. The improved herbicide efficacy at higher nutrient levels appeared related to increased herbicide interception by the greater leaf surface available. Leaves developing at either nutrient level did not differ significantly in epicuticular wax, so differential absorption appeared unlikely. Wild oat plants supplemented with nutrient, switching from low to high levels at the time of herbicide application, were as susceptible to imazamethabenz or even more so than plants growing with a constant high level of nutrition. The wild oat pure-line Montana 73, a strongly tillering line, was more susceptible to imazamethabenz than the limited-tillering line, Crop Science 40. Both 2,4-D and GA3 reduced imazamethabenz-induced tillering. Imazamethabenz efficacy was increased by GA3 but not by 2,4-D. These results support the hypothesis that lowering apical dominance of wild oat increases imazamethabenz activity in tillers, and that increased tillering following sublethal doses of imazamethabenz treatment is associated with the release of apical dominance.  相似文献   

10.
Homogenates of 7-day-old oat (Avena sativa L. cv. Brighton) roots were highly fluorescent (excitation and emission maxima around 360 and 440 nm, respectively). Less than 1/10 as much fluorescence per g fresh weight was found in oat shoots or in wheat (Triticum aestivum L. cv. Drabant) roots or shoots. Most of the fluorescence of oat roots was found in the soluble fraction (150 000g supernatant). However, some could be detected in the plasma membrane fraction (excitation and emission maxima 365 and 417 nm, respectively), which contained a 3-fold higher fluorescence per mg protein than the homogenate. Growth of oat or wheat in a medium containing, 10-?5M scopoletin (6-methoxy-7-hy-droxy coumarin), a fluorescent compound previously reported to be present in both wheat and oat roots, caused the disappearance of scopoletin from the medium (proportional to the amount of roots) and the appearance of increased fluorescence in the root homogenates but not in the shoot homogenates. In both oat and wheat roots ail of the extra fluorescence was recovered in the soluble fraction and at least in wheat it consisted of unconverted scopoletin. The concentration of scopoletin in wheat roots grown in 10-?5M scopoletin was around 50 nmol (g fresh weight)?1, or about five times the concentration in the growth medium. Scopoletin in the growth medium (10-?5M) or in the assays (up to 10-?4M) did not affect Mg2+-, Mg2++K+- or Ca2+-ATPase activities in wheat or oat roots. The fluorescence properties of the oat plasma membrane were different from those of authentic scopoletin. Either the surroundings modify the fluorescence of membrane-associated scopoletin or the endogenous fluorescent compound is not scopoletin but a glycoside-derivative of scopoletin or some completely unrelated compound.  相似文献   

11.
Summary We tested the hypothesis that mycorrhizal infection benefits wild plants to a lesser extent than cultivated plants. This hypothesis stems from two observations: (1) mycorrhizal infection improves plant growth primarily by increasing nutrient uptake, and (2) wild plants often possess special adaptations to soil infertility which are less pronounced in modern cultivated plants. In the first experiment, wild (Avena fatua L.) and cultivated (A. sativa L.) oats were grown hydroponically at four different phosphorus levels. Wild oat was less responsive (in shoot dry weight) to increasing phosphorus availability than cultivated oat. In addition, the root: shoot ratio was much more plastic in wild oat (varying from 0.90 in the low phosphorus solution to 0.25 in the high phosphorus solution) than in cultivated oat (varying from 0.44 to 0.17). In the second experiment, mycorrhizal and non-mycorrhizal wild and cultivated oats were grown in a phosphorus-deficient soil. Mycorrhizal infection generally improved the vegetative growth of both wild and cultivated oats. However, infection significantly increased plant lifespan, number of panicles per plant, shoot phosphorus concentration, shoot phosphorus content, duration of flowering, and the mean weight of individual seeds in cultivated oat, while it had a significantly reduced effect, no effect, or a negative effect on these characters for wild oat. Poor positive responsiveness of wild oat in these characters was thus associated with what might be considered to be inherent adaptations to nutrient deficiency: high root: shoot ratio and inherently low growth rate. Infection also increased seed phosphorus content and reproductive allocation.  相似文献   

12.
The effect of cereal leaf surface wax on Diuraphis noxia (Mordvilko), the Russian wheat aphid, probing behavior and nymphoposition was evaluated. Ultrastructure of leaf epicuticular wax from wheat (Triticum aestivum L.) c.v. Arapahoe and Halt was different from barley (Hordeum vulgare L.) c.v. Morex, and oat (Avena sativa L.) c.v. Border. Both wheat cultivars had similar rod-shaped epicuticular wax, while barley and oat plants had flakes. The chemical composition comparison of gas chromatograms also indicated that the extract of the two wheat cultivars had similar pattern of peaks, while the barley and oat leaves had similar peaks. Cereal variety significantly affected aphid probing behavior (P < 0.05), but wax removal using ethyl ether swab did not (P < 0.05). Aphids initiated significantly more probes on Border oat leaves than on Morex barley irrespective of wax removal, although total probing duration per aphid was not significantly different among the four cereals examined. Accumulative salivation duration per aphid on oat leaves with wax was significantly longer than other cereal leaves with wax, while accumulative ingestion duration per aphid on Arapahoe wheat and Morex barley was significantly longer than on oat. Nymphoposition of D. noxia on cereal leaves maintained on the benzimidazole-agar medium showed that aphids produced a greater number of nymphs on Morex barley and less on Border oat leaves, although wax removal did not affect aphid nymphoposition. Removal of leaf epicuticular waxes from the 4 cereal genotypes using ethyl ether swab indicated that the influence of wax on plant resistance to D. noxia probing and reproduction was limited. Morex barley was the most favorable, while Border oat was the least favorable cereal host of D. noxia.  相似文献   

13.
Seedlings of barley (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus cv. Line) were grown in complete nutrient solutions with 8 or 10 different P concentrations in the range of 0–2 mM. Phosphate export from roots to shoots was determined from the amount of 32P (or 33P) absorbed and exported to shoots in 1 h from a nutrient solution containing 0.1 mM radiolabelled phosphate. P export was also determined in the presence of a metabolic uncoupler (DNP, 2.4-dinitrophenol) and a protein synthesis inhibitor (CH, cycloheximide). Phosphorus export from roots to shoots reached a maximum at a certain optimum level of phosphorus in shoots and roots, and decreased at both higher and lower P levels. Maxinmm P export was 1.7 ± 0.2 and 4.5 ± 0.5 (mean ±se of the three species) times higher than the P export at the lowest and highest [P]root, respectively. Hill plots as well as plots of the untransformed decreasing P export vs root or shoot P concentrations above the optimum were linear and had high correlation coefficients. The Hill coefficient (nH) based on [P]root, was —7.7 for barley cv. Salka and varied between -3.8 and -4.5 for the other species. Based on [P]shootot nH was—16.1 for barley cv. Salka, -3.7 for barley cv. Zita and -6.4 for the two dicotyledonous species. Relative to the amount of P simultaneously absorbed by the root system, the import of P per unit shoot weight decreased linearly over the whole range of shoot P concentrations in the dicotyledonous species. In contrast, the relative import of P per unit shoot weight of the two barley cultivars increased at low levels of [P]shoot and decreased at higher levels. DNP and CH almost eliminated P export from roots to shoots of seedlings with low or high P status. In seedlings with medium P status only 60 to 75% of the P export was affected.  相似文献   

14.
Esters of substituted phenoxy-phenoxy propionic acid constitute a new class of herbicides that are effective against gramineous weed and crop species. Slight changes in chemical structure alter drastically the spectrum of weeds controlled by this class of herbicides. Wheat (Triticum aestivum L.) is resistant to diclofop-methyl (methyl 2-[4-(2′,4′-dichlorophenoxy)phenoxy] propanoate) (DM) and clofop-isobutyl (iso-butyl 2-[4-(4′-phenoxy)phenoxy] propanoate) (CI), oat (Avena sativa L.) and wild oat (Avena fatua L.) are susceptible to DM but resistant to CI, and corn (Zea mays L.) is susceptible to both compounds. The antagonism of IAA-induced elongation in the coleoptile straight growth test was determined to measure biological activity of the herbicides. The basis for the differential responses by gramineous species was related to the metabolism and deioxication of the herbicides in coleoptiles. Growth of wheat coleaptiles was relatively unaffected by both compounds, oat coleoptile growth was inhibited by DM but not by CI. but corn coleoptile growth was inhibited equally by both compounds. Coleoptiles and excised shoots of the three species rapidly hydrolyzed both compounds to their respective acids (diclofop, clofop). The acids were conjugated to a water-soluble ester conjugate or they were hydroxylated in the chlorine-substituted phenyl ring and conjugated as a phenolic conjugate. Aryl hydroxylation is a detoxication mechanism in resistant plants. Plants resistant to DM or CI contained low concentrations of the parent ester and the free or bound (ester conjugate) acid and a high concentration of free or bound (phenolic conjugate) aryl hydroxylated acid in coleoptile and shoot tissues, Differential responses by the three gramineous species to DM and CI axe due apparently to differences in their detoxication mechanism. The enzyme for aryl hydroxylation in oat appears to have a higher affinity for the 4-chloro- than for the 2,4-dichloro-substituted moiety. Therefore, oat hydroxylated clofop rapidly and was tolerant to CI but the limited ability of oat to hydroxylate diclofop resulted in oat being extremely susceptible to DM.  相似文献   

15.
Microsatellites have many desirable marker properties. There has been no report of the development and utilization of microsatellite markers in oat. The objectives of the present study were to construct oat microsatellite-enriched libraries, to isolate microsatellite sequences and evaluate their level of polymorphism in Avena species and oat cultivars. One hundred clones were isolated and sequenced from three oat microsatellite-libraries enriched for either (AC/TG) n , (AG/TC) n or (AAG/TTC) n repeats. Seventy eight clones contained microsatellites. A database search showed that 42% of the microsatellite flanking sequences shared significant homology with various repetitive elements. Alu and retrotransposon sequences were the two largest groups associated with the microsatellites. Forty four primer sets were used to amplify the DNA from 12 Avena species and 20 Avena sativa cultivars. Sixty two percent of the primers revealed polymorphism among the Avena species, but only 36% among the cultivars. In the cultivars, the microsatellites associated with repetitive elements were less polymorphic than those not associated with repetitive elements. Only 25% of the microsatellites associated with repetitive elements were polymorphic, while 46% of the microsatellites not associated with repetitive elements showed polymorphism in the cultivars. An average of four alleles with a polymorphism information content (PIC) of 0.57 per primer set was detected among the Avena species, and 3.8 alleles with a PIC of 0.55 among the cultivars. In addition, 54 barley microsatellite primers were tested in Avena species and 26% of the primers amplified microsatellites from oat. Using microsatellite polymorphisms, dendrograms were constructed showing phylogenetic relationships among Avena species and genetic relationships among oat cultivars. Received: 1 November 1999 / Accepted: 14 April 2000  相似文献   

16.
Abstract

In the framework of a phytoremediation project in the Apulia region (Italy) a field experiment was carried out in multi-metal contaminated soils. The accumulation and distribution of metals in different plant parts of durum wheat and barley were studied. Further, the application of Bacillus licheniformis strain BLMB1 to soil was evaluated as a means to enhance metal accumulation in plants. The translocation and the bioconcentration factors indicated that wheat and barley do not act as metal accumulators in the field conditions tested, thus phytoextraction by these species would not be recommended as a soil remediation alternative. Application of B. licheniformis improved the accumulation of all metals in roots of wheat and barley, and increased Cd, Cr, and Pb contents in the shoots of barley. Low health risk for humans and animals was evaluated to exist if straw and grain from both cereal crops grown in these contaminated sites are consumed.  相似文献   

17.
One cultivar each of spring wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir) was chosen in order to study the relative contributions of individual bracts to the gas exchange of whole ears. The distribution and frequency of the stomata on the bracts were examined. Gas exchange was measured at normal atmospheric CO2 (330 bar) and at high CO2 (2000 bar) on intact ears and on ears from which glumes or lemmas and pleae (wheat and oat) or awns (barley) had been removed.The relative contribution to the gas exchange of the whole organ is highest for the awns of barley ears. In wheat, the contribution of the glumes is slightly higher than that of the inner bracts before anthesis. Two weeks after anthesis the inner bracts contribute more than the glumes. This tendency of increasing importance of the inner bracts is also found in oat ears, but the relative amount of CO2 uptake by the glumes is higher than in wheat. These changes during ontogeny result from the better supply of light to the inner bracts caused by opening of the ears' structures during grain filling, which in part compensates for the decreasing photosynthetic capacity.The ratio of the photosynthesis rate at high CO2 to that at normal CO2 is lower for the glumes of oat and for the awns of barley than for the other bracts.Abbreviations A330, A2000 net photosynthesis rate, A330 at normal atmospheric CO2 (330 bar), A2000 at high CO2 (2000 bar) - PPFD photosynthetic photon flux density - pc intercellular partial pressure of CO2  相似文献   

18.
Brazil is blast disease hot spot because severe epidemics have occurred among wheat, triticale, rye, barley and oat crops. Although the first outbreak of barley blast appeared in 1998, little information is available. Therefore, this study aimed to examine host range, mating type composition and population structure of Magnaporthe sp. from a single barley field in São Paulo, Brazil. To examine pathogenicity, 25 Magnaporthe isolates were inoculated on five, three, two and two cultivars of barley, wheat, oat and rice, respectively, and one cultivar each of rye, corn, sorghum, triticale and certain weeds (Cenchrus echinatus, Setaria geniculata, Brachiaria plantaginea and Eleusine indica). Mating type distribution of 33 isolates was investigated by molecular tools. The genotypic divergence of 41 barley and five wheat isolates was investigated by 15 random amplified polymorphic DNA primers and unweighted pair group method with arithmetic mean. The host range of the barley blast pathogen included wheat, oat, rye and triticale but not rice and weeds. Sexual reproduction appeared to not be involved in the high genotypic diversity because only a single isolate, MAT1‐2, was identified. The majority of barley isolates clustered together with wheat blast, except for four, suggesting a different origin.  相似文献   

19.
Summary Thidiazuron (TDZ) is a substituted phenylurea which has been shown to be an efficacious regulator of in vitro morphogenesis of many dicot plant species. However, information regarding the effect of TDZ on in vitro regeneration of monocot species is limited. We investigated the effects of TDZ on in vitro regeneration of barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) and found that it promoted shoot regeneration from callus in these two important cereal species. Plant regeneration from calluses derived from immature embryo culture of barley and wheat was observed in regeneration media with a wide range of TDZ concentrations (0.045–45 μM). Shoot regeneration from barley calluses was the highest (38.3% for cv. Golden Promise) at 4.5 μM (1 mg l−1) TDZ, while the optimal TDZ level for wheat regeneration seemed to be 0.9 μM (0.2 mg l−1) (87% for cv. Bob White and 49.4% for cv. Hi Line). Roots developed normally when the regenerated wheat and barley shoots from TDZ-containing media were transferred to the rooting medium. Comparison with other plant growth regulators commonly used in wheat and barley regeneration media suggested that TDZ was among the best for in vitro regeneration of wheat and barley. Both authors contributed equally  相似文献   

20.
This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号