共查询到20条相似文献,搜索用时 15 毫秒
1.
Alexey P. Korepanov Anna V. Korobeinikova Sergey A. Shestakov Maria B. Garber George M. Gongadze 《Nucleic acids research》2012,40(18):9153-9159
In the present work, ribosomes assembled in bacterial cells in the absence of essential ribosomal protein L5 were obtained. After arresting L5 synthesis, Escherichia coli cells divide a limited number of times. During this time, accumulation of defective large ribosomal subunits occurs. These 45S particles lack most of the central protuberance (CP) components (5S rRNA and proteins L5, L16, L18, L25, L27, L31, L33 and L35) and are not able to associate with the small ribosomal subunit. At the same time, 5S rRNA is found in the cytoplasm in complex with ribosomal proteins L18 and L25 at quantities equal to the amount of ribosomes. Thus, it is the first demonstration that protein L5 plays a key role in formation of the CP during assembly of the large ribosomal subunit in the bacterial cell. A possible model for the CP assembly in vivo is discussed in view of the data obtained. 相似文献
2.
3.
Allard P Rak AV Wimberly BT Clemons WM Kalinin A Helgstrand M Garber MB Ramakrishnan V Härd T 《Structure (London, England : 1993)》2000,8(8):875-882
BACKGROUND: X-ray crystallography has recently yielded much-improved electron-density maps of the bacterial ribosome and its two subunits and many structural details of bacterial ribosome subunits are now being resolved. One approach to complement the structures and elucidate the details of rRNA and protein packing is to determine structures of individual protein components and model these into existing intermediate resolution electron density. RESULTS: We have determined the solution structure of the ribosomal protein S16 from Thermus thermophilus. S16 is a mixed alpha/beta protein with a novel folding scaffold based on a five-stranded antiparallel/parallel beta sheet. Three large loops, which are partially disordered, extend from the sheet and two alpha helices are packed against its concave surface. Calculations of surface electrostatic potentials show a large continuous area of positive electrostatic potential and smaller areas of negative potential. S16 was modeled into a 5.5 A electron-density map of the T. thermophilus 30S ribosomal subunit. CONCLUSIONS: The location and orientation of S16 in a narrow crevice formed by helix 21 and several other unassigned rRNA helices is consistent with electron density corresponding to the shape of S16, hydroxyl radical protection data, and the electrostatic surface potential of S16. Two protein neighbors to S16 are S4 and S20, which facilitate binding of S16 to the 30S subunit. Overall, this work exemplifies the benefits of combining high-resolution nuclear magnetic resonance (NMR) structures of individual components with low-resolution X-ray maps to elucidate structures of large complexes. 相似文献
4.
L2, L3, L4, L16 and L20 are proteins of the 50S ribosomal subunit of Escherichia coli which are essential for the assembly and activity of the peptidyl transferase centre. These proteins have been modified with the histidine-specific reagent, diethylpyrocarbonate, while L17 and L18 were treated as controls. Each modified protein tested was able to participate in the reconstitution of a 50S particle when replacing its normal counterpart, although the particles assembled with modified L2 were heterogeneous. However, although they could support assembly, modified L16 and L20 were not themselves reconstituted stably, and modified L2 and L3 were found in less than stoichiometric amounts. Particles assembled in the presence of modified L16 retained significant peptidyl transferase activity (60-70% at 10 mM diethylpyrocarbonate) whereas those reconstituted with modified L2, L3, L4 or L20 had low activity (10-30% at 10 mM diethylpyrocarbonate). The particles assembled with the modified control protein, L17, retained 80% of their peptidyl transferase activity under the same conditions. The histidine residues within the essential proteins therefore contribute to ribosome structure and function in three significant ways; in the correct assembly of the ribosomal subunit (L2), for the stable assembly of the proteins within the ribosomal particle (L20 and L16 in particular), and directly or indirectly for the subsequent activity of the peptidyl transferase centre (L2, L3, L4 and L20). The essential nature of the unmodified histidines for assembly events precludes the use of the chemical-modification strategy to test the proposal that a histidine on one of the proteins might participate in the catalytic activity of the centre. 相似文献
5.
Small ribosomal subunits from rat liver have been studied by electron microscopy using freeze-drying and high-resolution shadow casting. The absolute hand of the asymmetric subunit has been determined and its three-dimensional model with a 'right' location of the side protuberance has been constructed. The results evidence that pro- and eukaryotic ribosomes have a unique and principally similar structural organization. 相似文献
6.
7.
Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit. 总被引:1,自引:2,他引:1
下载免费PDF全文

E. coli 50S ribosomal subunits were reacted with monoperphthalic acid under conditions in which non-base paired adenines are modified to their 1-N-oxides. 5S RNA was isolated from such chemically reacted subunits and the two modified adenines were identified as A73 and A99. The modified 5S RNA, when used in reconstitution of 50S subunits, yielded particles with reduced biological activity (50%). The results are discussed with respect to a recently proposed three-dimensional structure for 5S RNA, the interaction of the RNA with proteins E-L5, E-L18 and E-L25 and previously proposed interactions of 5S RNA with tRNA, 16S and 23S ribosomal RNAs. 相似文献
8.
H. J. Smith D. P. Bourque 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,71(1):26-30
Summary The large subunits (50S) of chloroplast ribosomes were isolated from Nicotiana tabacum, a species of the Western Hemisphere, and from N. excelsior and N. gossei, Australian species. Their proteins were compared by two-dimensional gel electrophoresis. A pair of proteins (T12 and T12) observed in N. tabacum has electrophoretic mobilities which differ from those of a similarly migrating, and probably homologous, pair of proteins observed in N. excelsior and N. gossei. The species-specific proteins in N. tabacum differ slightly in electrophoretic mobilities based on both charge and molecular weight from those in N. excelsior and N. gossei. Tryptic digests of radioiodinated proteins reveal that the peptide maps of all six proteins are similar. These results suggest that chemically altered forms of one or more proteins of the 50S chloroplast ribosome subunit may exist in vivo. 相似文献
9.
Metabolism of 5S RNA in the absence of ribosome production 总被引:3,自引:0,他引:3
The results presented in this report show that during early development of Xenopus laevis the synthesis of 5S RNA occurs in blastula embryos, whereas the synthesis of 18S and 28S RNA cannot be detected until gastrulation. Thus the initiation of synthesis of the three ribosomal RNAs is not coordinate during early development. Blastula embryos are similar to anucleolate mutants of Xenopus laevis, in that they both synthesize 5S RNA, but are unable to assemble new ribosomes because they do not synthesize 18S and 28S RNA or ribosomal proteins. The blastula and anucleolate embryos thus provide a unique opportunity to determine if newly synthesized soluble 5S RNA can exchange with the 5S RNA present in existing ribosomes. The results show that newly synthesized 5S RNA is not incorporated into the ribosomes of blastula or anucleolate embryos. Furthermore, the 5S RNA synthesized by anucleolate mutants has a shorter half-life than the 5S RNA made by normal embryos. The synthesis of excess 5S RNA and its subsequent degradation in the absence of ribosome production appears to be another example of the phenomenon of wastage of newly synthesized ribosomal RNA. 相似文献
10.
11.
Willumeit R Forthmann S Beckmann J Diedrich G Ratering R Stuhrmann HB Nierhaus KH 《Journal of molecular biology》2001,305(1):167-177
The protein L2 is found in all ribosomes and is one of the best conserved proteins of this mega-dalton complex. The protein was localized within both the isolated 50 S subunit and the 70 S ribosome of the Escherichia coli bacteria with the neutron-scattering technique of spin-contrast variation. L2 is elongated, exposing one end of the protein to the surface of the intersubunit interface of the 50 S subunit. The protein changes its conformation slightly when the 50 S subunit reassociates with the 30 S subunit to form a 70 S ribosome, becoming more elongated and moving approximately 30 A into the 50 S matrix. The results support a recent observation that L2 is essential for the association of the ribosomal subunits and might participate in the binding and translocation of the tRNAs. 相似文献
12.
13.
Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly
下载免费PDF全文

The cricket paralysis virus intergenic region internal ribosomal entry site (CrPV IGR IRES) can assemble translation initiation complexes by binding to 40S subunits without Met-tRNA(Met)(i) and initiation factors (eIFs) and then by joining directly with 60S subunits, yielding elongation-competent 80S ribosomes. Here, we report that eIF1, eIF1A and eIF3 do not significantly influence IRES/40S subunit binding but strongly inhibit subunit joining and the first elongation cycle. The IRES can avoid their inhibitory effect by its ability to bind directly to 80S ribosomes. The IRES's ability to bind to 40S subunits simultaneously with eIF1 allowed us to use directed hydroxyl radical cleavage to map its position relative to the known position of eIF1. A connecting loop in the IRES's pseudoknot (PK) III domain, part of PK II and the entire domain containing PK I are solvent-exposed and occupy the E site and regions of the P site that are usually occupied by Met-tRNA(Met)(i). 相似文献
14.
Binding of S21 to the 50S subunit and the effect of the 50S subunit on nonradiative energy transfer between the 3' end of 16S RNA and S21 总被引:3,自引:0,他引:3
Escherichia coli ribosomal protein S21 was labeled at its single cysteine group with a fluorescent probe. Labeled S21 showed full activity in supporting MS2 RNA-dependent binding of formylmethionyl-tRNAf to 30S ribosomal subunits. Fluorescence anisotropy measurements and direct analysis on glycerol gradients demonstrate conclusively that labeled S21 binds to 50S ribosomal subunits as well as to 30S and 70S particles. The relative binding affinities are in the order 70S greater than 30S greater than 50S. Other results presented appear to indicate that S21 is bound in the same position on either 50S subunits or 30S subunits as in 70S ribosomes, suggesting that the protein is bound simultaneously to both subunits in the latter. Addition of 50S subunits to 30S particles containing probes on S21 and at the 3' end of 16S RNA caused a decrease in the energy transfer between these points. The results correspond to an apparent change in distance from 51 to 61 A. 相似文献
15.
16.
Recognition of tRNA by the ribosome. A possible role of 5 S RNA 总被引:5,自引:0,他引:5
S K Dube 《FEBS letters》1973,36(1):39-42
17.
Eukaryotic cells have quality control systems that eliminate nonfunctional rRNAs with deleterious mutations (nonfunctional rRNA decay, NRD). We have previously reported that 25S NRD requires an E3 ubiquitin ligase complex, which is involved in ribosomal ubiquitination. However, the degradation process of nonfunctional ribosomes has remained unknown. Here, using genetic screening, we identified two ubiquitin-binding complexes, the Cdc48-Npl4-Ufd1 complex (Cdc48 complex) and the proteasome, as the factors involved in 25S NRD. We show that the nonfunctional 60S subunit is dissociated from the 40S subunit in a Cdc48 complex-dependent manner, before it is attacked by the proteasome. When we examined the nonfunctional 60S subunits that accumulated under proteasome-depleted conditions, the majority of mutant 25S rRNAs retained their full length at a single-nucleotide resolution. This indicates that the proteasome is an essential factor triggering rRNA degradation. We further showed that ribosomal ubiquitination can be stimulated solely by the suppression of the proteasome, suggesting that ubiquitin-proteasome-dependent RNA degradation occurs in broader situations, including in general rRNA turnover. 相似文献
18.
Only two sites in 5 S RNA react with Kethoxal in 50 S ribosomal subunits. These two sites, G13 and G41, have previously been found to be accessible in free 5 S RNA. Nucleotide sequences which have been suggested as possible binding sites for the T-ψ-C-G loop of tRNA are not accessible. 相似文献
19.
20.
D. P. Burma 《Journal of biosciences》1984,6(4):419-430
Since the recognition of the ‘translocation’ phenomenon during protein synthesis several theories have been proposed, without much success, to explain the translocation of peptidyl tRNA from the aminoacyl site to the peptidyl site. The involvement of L7/L12 proteins and therefore the L7/L12 stalk region of 50S ribosomes in the translocation process has been widely accepted. The mobility of the stalk region, as recognised by many workers, must be of physiological significance. It has recently been shown in this laboratory that 50S ribosomes derived from tight and loose couple 70S ribosomes differ markedly in quite a few physical and biological properties and it appears that these differences are due to the different conformations of 23S RNAs. It has also been possible to interconvert tight and loose couple 50S ribosomes with the help of the agents, elongation factor -G, GTP (and its analogues) which are responsible for translocation. Thus loose couple 70S ribosomes so long thought to be inactive ribosomes are actually products of translocation. Further, the conformational change of 23S RNA appears to be responsible for the interconversion of tight and loose couple 50S ribosomes and thus the process of translocation. A model has been proposed for translocation on the basis of the direct experimental evidences obtained in this laboratory. 相似文献