首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jiang  Hua  Wang  Xue-Hua  Deng  Qi-Yun  Yuan  Long-Ping  Xu  Da-Quan 《Photosynthetica》2002,40(1):133-137
Photosynthetic characteristics of two hybrid rice combinations, Peiai 64S/E32 and Shanyou 63, were compared at the panicle differentiation stage. As compared with Shanyou 63, the new combination Peiai 64S/E32 showed a significantly higher net photosynthetic rate (P N), apparent quantum yield of carbon assimilation (c), carboxylation efficiency (CE), and photorespiratory rate (R P) as well as leaf chlorophyll content, but a significantly lower dark respiration rate (R D) and compensation irradiance (I c). It also showed a slightly higher photochemical efficiency (Fv/Fm and F/Fm) of photosystem 2, a lower non-photochemical quenching (qN), and a similar CO2 compensation concentration () as compared to Shanyou 63.  相似文献   

2.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

3.
Liu  M.Z.  Jiang  G.M.  Li  Y.G.  Gao  L.M.  Niu  S.L.  Cui  H.X.  Ding  L. 《Photosynthetica》2003,41(3):393-398
Gas exchange, photochemical efficiency, and leaf water potential (l) of Salix matsudana (non-indigenous species), S. microstachya and S. gordejevii (indigenous species) were studied in Hunshandak Sandland, China. l of all the three species decreased from 06:00 to 12:00, and increased afterwards. S. matsudana showed higher values of l than others. Net photosynthetic rate (P N) and stomatal conductance (g s) of S. matsudana were the lowest among all, with the maximum P N at 10:00 being 75% of that of S. gordejevii. Compared with the indigenous species, the non-indigenous S. matsudana had also lower transpiration rate (E) and water use efficiency (WUE). The values of Fv/Fm in all the species were lower from 06:00 to 14:00 than those after 14:00, indicating an obvious depression in photochemical efficiency of photosystem 2 in both non-indigenous and native species. However, it was much more depressed in S. matsudana, the non-indigenous tree. P N was positively correlated to g s and negatively related to l. The relationship between g s and vapour pressure difference (VPD) was exponential, while negative linear correlation was found between g s and l.  相似文献   

4.
The interaction of extreme temperature events with future atmospheric CO2 concentrations may have strong impacts on physiological performance of desert shrub seedlings, which during the critical establishment phase often endure temperature extremes in conjunction with pronounced drought. To evaluate the interaction of drought and CO2 on photosynthesis during heat stress, one-year-old Larrea tridentata[DC] Cov. seedlings were exposed to nine days of heat with midday air temperature maxima reaching 53 °C under three atmospheric CO2 concentrations (360, 550 and 700 mol mol–1) and two water regimes (well-watered and droughted). Photosynthetic gas exchange, chlorophyll fluorescence and water potential responses were measured prior to, during and one week following the high temperature stress event. Heat stress markedly decreased net photosynthetic rate (A net), stomatal conductance (g s), and the photochemical efficiency of photosystem II (F v/F m) in all plants except for well-watered L. tridentata grown in 700 mol mol–1 CO2. A net and g s remained similar to pre-stress levels in these plants. In droughted L. tridentata, A net was ca. 2× (in 550 mol mol–1 CO2) to 3× (in 700 mol mol–1 CO2) higher than in ambient-CO2-grown plants, while g s and F v/F m were similar and low in all CO2 treatments. Following heat stress, g s in all well-watered plants rose dramatically, exceeding pre-stress levels by up to 100%. In droughted plants, g s and A net rose only in plants grown at elevated CO2 following release from heat. This recovery response was strongest at 700 mol mol–1 CO2, which returned to A net and g s values similar to pre-heat following several days of recovery. Extreme heat diminished the photosynthetic down-regulation response to growth at elevated CO2 under well-watered conditions, similar to the action of drought. Ambient-CO2-grown L. tridentata did not show significant recovery of photosynthetic capacity (A \max and CE) after alleviation of temperature stress, especially when exposed to drought, while plants exposed to elevated CO2 appeared to be unaffected. These findings suggest that elevated CO2 could promote photosynthetic activity during critical periods of seedling establishment, and enhance the potential for L. tridentata to survive extreme high temperature events.  相似文献   

5.
Bethenod  O.  Huber  L.  Slimi  H. 《Photosynthetica》2001,39(4):581-590
To quantify photosynthetic response of wheat to the combination of a fungal brown rust infection and a post-infection drought, four treatments were compared: no stress (control), fungal stress (FS), water stress (WS), and twofold stress (WS×FS). Predawn leaf water potential (wp) was similar in FS and WS treatments over a 3-week period. In the WS treatment, net photosynthetic rate (P N) and stomata CO2 conductance (g s) diminished concomitantly with a constant intercellular CO2 concentration (C i) close to 200 µmol mol–1. In the FS treatment, a reduction of P N occurred with an increase in respiration rate (doubling of the CO2 compensation concentration) and in C i but with no water loss modification. Healthy leaves of infected plants (FS) showed a reduction of P N as well, with constant g s and increased C i. In the twofold stress treatment (WS×FS), leaves showed reduced P N in relation to the lower wp. Deleterious effects of both drought and fungal infection on the final area of leaves and dry matter were additive.  相似文献   

6.
Net photosynthetic rate (PN), transpiration rate (E), and stomatal conductance (gs) during water stress and after rehydration were measured in Phaseolus vulgaris, Beta vulgaris, and Zea mays. Immediately before imposition of water stress by cessation of watering, plants were irrigated with water (control), 100 M abscisic acid (ABA), and/or 10 M N6-benzyladenine (BA). In all three species, application of ABA decreased gs, E, and PN already 1 h after application. However, during water stress gs, E, and PN in plants pre-treated with ABA remained higher than in plants pre-treated with water. Positive effects of ABA application were observed also after rehydration. In contrast, the effects of pre-treatment with BA were species-specific. While in bean plants BA application ameliorated negative effect of water stress, only very slight effects were observed in maize, and in sugar beet BA even aggravated the effects of water stress.  相似文献   

7.
Kyei-Boahen  S.  Astatkie  T.  Lada  R.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(4):597-603
Short-term responses of four carrot (Daucus carota) cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) to CO2 concentrations (C a) were studied in a controlled environment. Leaf net photosynthetic rate (P N), intercellular CO2 (C i), stomatal conductance (g s), and transpiration rate (E) were measured at C a from 50 to 1 050 mol mol–1. The cultivars responded similarly to C a and did not differ in all the variables measured. The P N increased with C a until saturation at 650 mol mol–1 (C i= 350–400 mol mol–1), thereafter P N increased slightly. On average, increasing C a from 350 to 650 and from 350 to 1 050 mol mol–1 increased P N by 43 and 52 %, respectively. The P N vs. C i curves were fitted to a non-rectangular hyperbola model. The cultivars did not differ in the parameters estimated from the model. Carboxylation efficiencies ranged from 68 to 91 mol m–2 s–1 and maximum P N were 15.50, 13.52, 13.31, and 14.96 mol m–2 s–1 for Cascade, CC, Oranza, and RCC, respectively. Dark respiration rate varied from 2.80 mol m–2 s–1 for Oranza to 3.96 mol m–2 s–1 for Cascade and the CO2 compensation concentration was between 42 and 46 mol mol–1. The g s and E increased to a peak at C a= 350 mol mol–1 and then decreased by 17 and 15 %, respectively when C a was increased to 650 mol mol–1. An increase from 350 to 1 050 mol mol–1 reduced g s and E by 53 and 47 %, respectively. Changes in g s and P N maintained the C i:C a ratio. The water use efficiency increased linearly with C a due to increases in P N in addition to the decline in E at high C a. Hence CO2 enrichment increases P N and decreases g s, and can improve carrot productivity and water conservation.  相似文献   

8.
Zhang  Shouren  Li  Qingkang  Ma  Keping  Chen  Lingzhi 《Photosynthetica》2001,39(3):383-388
The effects of varying leaf temperature (T 1) on some ecophysiological characteristics of photosynthesis for Quercus liaotungensis Koiz. under ambient radiation stress around midday on clear summer days were investigated using an IRGA equipped with a temperature-controlled cuvette. Net photosynthetic rate (P N) decreased as T 1 increased from 30 to 35 °C as a result of stomatal closure, whereas non-stomatal limitation led to decreased P N in the T 1 range of 35–45 °C. Decreased transpiration rate (E) and stomatal conductance (g s) at leaf temperatures above 30 °C were interpreted as a combined feedward effect as a result of enhanced leaf-air vapour pressure deficit (VPD) and stomatal closure. Changes in E from T 1 30 to 20 °C depended on VPD when g s was maintained constant. Water use efficiency (WUE) varied inversely with T 1 by following a hyperbola. A decrease in intercellular CO2 concentration (C i) occurred as a result of stomatal closure and a relatively high carboxylation capacity, whereas inactivation of mesophyll carboxylation in combination with photorespiration might be associated with the observed increase in C i in the T 1 range of 40 to 45 °C.  相似文献   

9.
The response of effective quantum yield of photosystem 2 (F/Fm) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m–2s–1] highest F/Fm occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, F/Fm was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which F/Fm dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of F/Fm showed significantly higher F/Fm values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on F/Fm, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

10.
The ATP synthase complex of Klebsiella pneumoniae (KF1F0) has been purified and characterized. SDS-gel electrophoresis of the purified F1F0 complexes revealed an identical subunit pattern for E. coli (EF1F0) and K. pneumoniae. Antibodies raised against EF1 complex and purified EF0 subunits recognized the corresponding polypeptides of EF1F0 and KF1F0 in immunoblot analysis. Protease digestion of the individual subunits generated an identical cleavage pattern for subunits , , , , a, and c of both enzymes. Only for subunit different cleavage products were obtained. The isolated subunit c of both organisms showed only a slight deviation in the amino acid composition. These data suggest that extensive homologies exist in primary and secondary structure of both ATP synthase complexes reflecting a close phylogenetic relationship between the two enterobacteric tribes.Abbreviations ACMA 9-amino-6-chloro-2-methoxyacridine - DCCD N,N-dicyclohexylcarbodiimide - FITC fluorescein isothiocyanate - SDS sodium dodecyl sulfate - TTFB 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole  相似文献   

11.
Bombelli  A.  Gratani  L. 《Photosynthetica》2003,41(4):619-625
Leaf gas exchange and plant water relations of three co-occurring evergreen Mediterranean shrubs species, Quercus ilex L. and Phillyrea latifolia L. (typical evergreen sclerophyllous shrubs) and Cistus incanus L. (a drought semi-deciduous shrub), were investigated in order to evaluate possible differences in their adaptive strategies, in particular with respect to drought stress. C. incanus showed the highest annual rate of net photosynthetic rate (P N) and stomatal conductance (g s) decreasing by 67 and 69 %, respectively, in summer. P. latifolia and Q. ilex showed lower annual maximum P N and g s, although P N was less lowered in summer (40 and 37 %, respectively). P. latifolia reached the lowest midday leaf water potential (1) during the drought period (–3.54±0.36 MPa), 11 % lower than in C. incanus and 19 % lower than in Q. ilex. Leaf relative water content (RWC) showed the same trend as 1. C. incanus showed the lowest RWC values during the drought period (60 %) while they were never below 76 % in P. latifolia and Q. ilex; moreover C. incanus showed the lowest recovery of 1 at sunset. Hence the studied species are well adapted to the prevailing environment in Mediterranean climate areas, but they show different adaptive strategies that may be useful for their co-occurrence in the same habitat. However, Q. ilex and P. latifolia by their water use strategy seem to be less sensitive to drought stress than C. incanus.  相似文献   

12.
Summary The synthesis of two model Tyr(P)-containing peptides using Fmoc-Tyr(PO3 tBu2)-OH, Fmoc-Tyr(PO3Bzl2)-OH and Fmoc-Tyr(PO3H2)-OH established that the t-butylphosphate-protected derivative was the preferred derivative for use in Fmoc solid-phase peptide synthesis, since it afforded phosphopeptides in high purity and with the lowest amount of Tyr-peptide contamination. In addition, this study confirmed that commercially available Fmoc-Tyr(PO3H2)-OH is also suitable for use in Fmoc solid-phase synthesis but gives less pure phosphopeptides, along with the generation of 1–4% of the tyrosine-containing peptide for the model sequences studied. In view of the good performance of Fmoc-Tyr(PO3 tBu2)-OH, a large-scale three-step synthetic procedure was developed which involved phenacyl protection of the carboxyl group, phosphite-triester phosphorylation of the tyrosyl hydroxyl using di-t-butyl N,N-diethylphosphoramidite, and final removal of the phenacyl group by zinc reduction in acetic acid.Abbreviations BOP benzotriazol-1-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate - tBu t-butyl - Bzl benzyl - DBU 1,8-diazabicyclo[5,4,0]undec-7-ene - DMF N,N-dimethylformamide - EDT ethanedithiol - Fmoc 9-fluorenylmethoxycarbonyl - HOBt N-hydroxybenzotriazole - HPLC high performance liquid chromatography - NMM N-methylmorpholine - Pac phenacyl - TFA trifluoroacetic acid - THF tetrahydrofuran - Tyr(P) O-phosphotyrosine  相似文献   

13.
Naramoto  M.  Han  Q.  Kakubari  Y. 《Photosynthetica》2001,39(4):545-552
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mol m–2 s–1) to 1 000 mol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (P Nmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest P Nmax among the three species. The photosynthetic induction period required to reach P Nmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach P Nmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mol m–2 s–1. The induction period was correlated with initial P N and stomatal conductance (g s) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial P N and g s increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in P N and g s at the same background PPFD.  相似文献   

14.
Jiang  G.M.  Hao  N.B.  Bai  K.Z.  Zhang  Q.D.  Sun  J.Z.  Guo  R.J.  Ge  Q.Y.  Kuang  T.Y. 《Photosynthetica》2000,38(2):227-232
Variables of gas exchange of flag leaves and grain yield potentials of five representative winter wheat (Triticum aestivum L.) cultivars varied greatly across different development stages under the same management and irrigation. The cultivars with high yield potential had higher net photosynthetic rate (P N), PPFD (photosynthetic photon flux density) saturated photosynthetic rate (P sat), stomatal conductance (g s), and maximum apparent quantum yield of CO2 fixation (m,app) than those with low grain yield, but their dark respiration rate (R D) and compensation irradiance (I c) were remarkably lower. Compared with overall increase of yield potential of 71 % from low yield cultivars to high yield ones, P N, P sat, m,app, and g s were 13, 19, 57, and 32 % higher, respectively; but R D and I c decreased by 19 and 76 %, respectively. Such difference was evidently large during anthesis stage (e.g., P N by 33 %), which indicated that this period could be the best for assisting further selection for better cultivars. However, transpiration rate (E) and water use efficiency (WUE) differed only little. At different development stages, especially at anthesis, P N and P sat were positively correlated with m,app, g s, and yield potential, and negatively correlated with R D and I c. Thus the high-yield-potential winter wheat cultivars possess many better characters in photosynthesis and associated parameters than the low-yield cultivars.  相似文献   

15.
We tested the usefulness of chlorophyll a fluorescence quenching analysis for the selection of maize parental inbred lines able to produce F1 hybrids with a high CO2 assimilation rate during growth at suboptimal temperature. Fifty inbred lines, grown at 15 °C, showed at 6 °C a broad genetic variability regarding the quantum yield of photosynthetic electron transport (PS2). A decrease of PS2 in sensitive lines was caused more by reduction of the efficiency of excitation energy capture by open photosystem 2 (PS2) reaction centres (Fv'/Fm') than by a drop in photochemical quenching (qP). Selected inbred lines with the highest (H) and the lowest (L) values of PS2 were used for separate crossings in a diallelic arrangement. Twenty-one of H×H hybrids and 21 of the L×L hybrids were grown at 15 °C. The H×H hybrids showed at suboptimal temperature a significantly higher transport of photosynthetic electrons than the L×L hybrids at lower (400) as well as at higher [800 mol(photon) m–2 s–1] irradiance. The mean net photosynthetic rate (P N) in H×H and L×L hybrids amounted to 8.4 and 5.8 (second leaf) and 8.5 and 7.6 mol(CO2) m–2 s–1 (third leaf), respectively. Among the best 20 hybrids with regard to P N (values larger than the average) of second leaves, as many as 15 were derived from H lines (75 % of hybrids), whereas among the best 21 hybrids with regard to P N of the third leaves, 16 were derived from H lines (76 % of hybrids). The intensive P N of H×H hybrids was most often accompanied by less water lost via transpiration in relation to photosynthesis than in the hybrids of L lines. Hence an analysis of chlorophyll a fluorescence quenching enables the selection of inbred lines, which can produce hybrids with improved CO2 fixation and with efficient water management during growth at suboptimal temperature.  相似文献   

16.
Diurnal variation in leaf stomatal conductance (g s) of three xerophilous species (Buddleia cordata, Senecio praecox and Dodonaea viscosa) was measured over a 10-month period during the dry and wet seasons in a shrubland that is developing in a lava substratum in Mexico. Averaged stomatal conductances were 147 and 60.2 (B. cordata), 145 and 24.8 (D. viscosa) and 142.8 and 14.1 mmol m–2 s–1 (S. praecox) during the wet and dry season respectively. Leaf water potential () varied in a range of –0.6 to –1.2 (S. praecox), –0.6 to –1.8 (B. cordata) and –0.9 to –3.4 MPa (D. viscosa) during the same measurement periods. Stomata were more sensitive to changes in irradiance, air temperature and leaf–air vapour pressure difference in the rainy season than the dry season. Although stomatal responses to were difficult to distinguish in any season (dry or rainy), data for the entire period of measurement showed a positive correlation, stomata tending to open as increased, but there is strong evidence of isohydric behaviour in S. praecox and B. cordata. A multiplicative model relating g s to environmental variables and to accounted for 79%–83% of the variation of g s in three sites (pooled data); however, the performance of the model was poorer (60%–76%) for individual species from other sites not included in the pooled data.  相似文献   

17.
Pandey  S.  Kumar  S.  Nagar  P.K. 《Photosynthetica》2003,41(4):505-511
Diurnal variation in net photosynthetic rate (P N) of three-year-old plants of Ginkgo biloba was studied under open, O (receiving full sunlight), net-shade, NS (40 % of photosynthetically active radiation, PAR), or greenhouse, G (25 % PAR) conditions. In all three conditions, P N was higher in morning along with stomatal conductance (g s), and intercellular CO2 concentration (C i), while leaf temperature and vapour pressure deficit were low. The O-plants exhibited a typical decline in P N during midday, which was not observed in NS-plants. This indicated a possible photoinhibition in O-plants as the ratio of variable to maximum fluorescence (Fv/Fm) and photosystem 2 (PS2) yield (PS2) values were higher in the NS- and G-plants. On the contrary, stomatal density and index, chlorophyll a/b ratio, leaf thickness, and density of mesophyll cells were greater in O-plants. Further, higher P N throughout the day along with higher relative growth rate under NS as compared to O and G suggested the better efficiency of Ginkgo plants under NS conditions. Therefore, this plant species could be grown at 40 % irradiance to meet the ever-increasing demand of leaf and also to increase its export potential.  相似文献   

18.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

19.
We investigated net photosynthetic rate (PN) of ear and two uppermost (flag and penultimate) leaves of wheat cultivars Hongmangmai (drought resistant) and Haruhikari (drought sensitive) during post-anthesis under irrigated and non-irrigated field conditions. The PNof ear and flag leaf were significantly higher and less affected by drought in Hongmangmai than in Haruhikari. The rate of reduction in stomatal conductance (gs) was similar for the two cultivars, but intercellular CO2concentration (Ci) in the flag leaf of Hongmangmai was lower than that of Haruhikari in non-irrigated treatment. No differences were observed in leaf water potential (1) and osmotic adjustment of the flag leaf of the cultivars. These results imply that differences in photosynthetic inhibition on the flag leaf at low leaf 1between the cultivars were primarily due to non-stomatal effects. Hence the main physiological factor associated with yield stability of Hongmangmai under drought stress may be attributed to the capacity for chloroplast activity in the flag leaf, which apparently allows sustained PNof flag leaf during grain filling under drought stress. The higher PNof ear in Hongmangmai under drought could also be related to its drought resistance.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

20.
Jia  Yinsuo  Gray  V.M. 《Photosynthetica》2003,41(4):605-610
We determined for Vicia faba L the influence of nitrogen uptake and accumulation on the values of photon saturated net photosynthetic rate (P Nmax), quantum yield efficiency (), intercellular CO2 concentration (C i), and carboxylation efficiency (C e). As leaf nitrogen content (NL) increased, the converged onto a maximum asymptotic value of 0.0664±0.0049 mol(CO2) mol(quantum)–1. Also, as NL increased the C i value fell to an asymptotic minimum of 115.80±1.59 mol mol–1, and C e converged onto a maximum asymptotic value of 1.645±0.054 mol(CO2) m–2 s–1 Pa–1 and declined to zero at a NL-intercept equal to 0.596±0.096 g(N) m–2. fell to zero for an NL-intercept of 0.660±0.052 g(N) m–2. As NL increased, the value of P Nmax converged onto a maximum asymptotic value of 33.400±2.563 mol(CO2) m–2 s–1. P N fell to zero for an NL-intercept of 0.710±0.035 g(N) m–2. Under variable daily meteorological conditions the values for NL, specific leaf area (L), root mass fraction (Rf), P Nmax, and remained constant for a given N supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号