首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
3.
RNA is directly associated with a growing number of functions within the cell. The accurate prediction of different RNA higher-order structures from their nucleic acid sequences will provide insight into their functions and molecular mechanics. We have been determining statistical potentials for a collection of structural elements that is larger than the number of structural elements determined with experimentally determined energy values. The experimentally derived free energies and the statistical potentials for canonical base-pair stacks are analogous, demonstrating that statistical potentials derived from comparative data can be used as an alternative energetic parameter. A new computational infrastructure—RNA Comparative Analysis Database (rCAD)—that utilizes a relational database was developed to manipulate and analyze very large sequence alignments and secondary-structure data sets. Using rCAD, we determined a richer set of energetic parameters for RNA fundamental structural elements including hairpin and internal loops. A new version of RNAfold was developed to utilize these statistical potentials. Overall, these new statistical potentials for hairpin and internal loops integrated into the new version of RNAfold demonstrated significant improvements in the prediction accuracy of RNA secondary structure.  相似文献   

4.
5.
6.
7.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号