首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The benthic biome of the deep-sea floor, one of the largest biomes on Earth, is dominated by diverse and highly productive heterotrophic protists, second only to prokaryotes in terms of biomass. Recent evidence suggests that these protists play a significant role in ocean biogeochemistry, representing an untapped source of knowledge. DNA metabarcoding and environmental sample sequencing have revealed that deep-sea abyssal protists exhibit high levels of specificity and diversity across local regions. This review aims to provide a comprehensive summary of the known heterotrophic protists from the deep-sea floor, their geographic distribution, and their interactions in terms of parasitism and predation. We offer an overview of the most abundant groups and discuss their potential ecological roles. We argue that the exploration of the biodiversity and species-specific features of these protists should be integrated into broader deep-sea research and assessments of how benthic biomes may respond to future environmental changes.  相似文献   

2.
The dark ocean and the underlying deep seafloor together represent the largest environment on this planet, comprising about 80% of the oceanic volume and covering more than two-thirds of the Earth's surface, as well as hosting a major part of the total biosphere. Emerging evidence suggests that these vast pelagic and benthic habitats play a major role in ocean biogeochemistry and represent an “untapped reservoir” of high genetic and metabolic microbial diversity. Due to its huge volume, the water column of the dark ocean is the largest reservoir of organic carbon in the biosphere and likely plays a major role in the global carbon budget. The dark ocean and the seafloor beneath it are also home to a largely enigmatic food web comprising little-known and sometimes spectacular organisms, mainly prokaryotes and protists. This review considers the globally important role of pelagic and benthic protists across all protistan size classes in the deep-sea realm, with a focus on their taxonomy, diversity, and physiological properties, including their role in deep microbial food webs. We argue that, given the important contribution that protists must make to deep-sea biodiversity and ecosystem processes, they should not be overlooked in biological studies of the deep ocean.  相似文献   

3.
铁作为浮游植物所必需的微量元素,限制了全球超过三分之一海域的初级生产力,尤其是在高营养盐、低叶绿素海域(high nutrient low chlorophyll,HNLC)。长期以来海洋铁施肥被认为是一项可以降低大气二氧化碳含量的地球工程策略。然而通过13次海洋人工铁施肥(artificial ocean iron fertilization,aOIF)实验发现,铁的额外添加对海洋深层碳输出量的促进作用要显著低于预期。本文简要地总结了碳在海洋和大气中的循环过程,回顾了人工铁施肥实验对生物碳泵和碳通量等的影响,分析了从海洋铁施肥到海洋碳汇关键生物地球化学过程的影响因素。综上分析发现,科学界对生物碳泵过程及其调控机制的认识仍十分浅薄,考虑到海洋铁施肥还会对海洋生态系统带来一定的负面作用,铁施肥能否作为降低大气中CO2的有效手段,以达到碳中和并缓解温室效应仍需进一步研究。  相似文献   

4.
Climate change scenarios suggest that large-scale carbon dioxide removal (CDR) will be required to maintain global warming below 2°C, leading to renewed attention on ocean iron fertilization (OIF). Previous OIF modelling has found that while carbon export increases, nutrient transport to lower latitude ecosystems declines, resulting in a modest impact on atmospheric CO2. However, the interaction of these CDR responses with ongoing climate change is unknown. Here, we combine global ocean biogeochemistry and ecosystem models to show that, while stimulating carbon sequestration, OIF may amplify climate-induced declines in tropical ocean productivity and ecosystem biomass under a high-emission scenario, with very limited potential atmospheric CO2 drawdown. The ‘biogeochemical fingerprint’ of climate change, that leads to depletion of upper ocean major nutrients due to upper ocean stratification, is reinforced by OIF due to greater major nutrient consumption. Our simulations show that reductions in upper trophic level animal biomass in tropical regions due to climate change would be exacerbated by OIF within ~20 years, especially in coastal exclusive economic zones (EEZs), with potential implications for fisheries that underpin the livelihoods and economies of coastal communities. Any fertilization-based CDR should therefore consider its interaction with ongoing climate-driven changes and the ensuing ecosystem impacts in national EEZs.  相似文献   

5.
Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM-based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.  相似文献   

6.
Biomineralization is widespread among photosynthetic organisms in the ocean, in inland waters and on land. The most quantitatively important biogeochemical role of land plants today in biomineralization is silica deposition in vascular plants, especially grasses. Terrestrial plants also increase the rate of weathering, providing the soluble substrates for biomineralization on land and in water bodies, a role that has had global biogeochemical impacts since the Devonian. The dominant photosynthetic biomineralizers in today's ocean are diatoms and radiolarians depositing silica and coccolithophores and foraminifera depositing calcium carbonate. Abiotic precipitation of silica from supersaturated seawater in the Precambrian preceded intracellular silicification dominated by sponges, then radiolarians and finally diatoms, with successive declines in the silicic acid concentration in the surface ocean, resulting in some decreases in the extent of silicification and, probably, increases in the silicic acid affinity of the active influx mechanisms. Calcium and bicarbonate concentrations in the surface ocean have generally been supersaturating with respect to the three common calcium carbonate biominerals through geological time, allowing external calcification as well as calcification in compartments within cells or organisms. The forms of calcium carbonate in biominerals, and presumably the evolution of the organisms that produce them, have been influenced by abiotic variations in calcium and magnesium concentrations in seawater, and calcium carbonate deposition has probably also been influenced by carbon dioxide concentration whose variations are in part biologically determined. Overall, there has been less biological feedback on the availability of substrates for calcification than is the case for silicification.  相似文献   

7.
Grazing-induced changes in cell wall silicification in a marine diatom   总被引:1,自引:0,他引:1  
In aquatic environments, diatoms (Bacillariophyceae) constitute a central group of microalgae which contribute to about 40% of the oceanic primary production. Diatoms have an absolute requirement for silicon to build-up their silicified cell wall in the form of two shells (the frustule). To date, changes in diatom cell wall silicification have been only studied in response to changes in the growth environment, with consistent increase in diatom silica content when specific growth rates decrease under nutrient or light limitations. Here, we report the first evidence for grazing-induced changes in cell wall silicification in a marine diatom. Cells grown in preconditioned media that had contained both diatoms and herbivores are significantly more silicified than diatoms grown in media that have contained diatoms alone or starved herbivores. These observations suggest that grazing-induced increase in cell wall silicification can be viewed as an adaptive reaction in habitats with variable grazing pressure, and demonstrate that silicification in diatoms is not only a constitutive mechanical protection for the cell, but also a phenotypically plastic trait modulated by grazing. In turn, our results corroborate the idea that plant-herbivore interactions, beyond grazing sensu stricto, contribute to drive ecosystem structure and biogeochemical cycles in the ocean.  相似文献   

8.
Among the many inhabitants of planktonic communities, several lineages have biomineralized intricate skeletons. These have existed for millions of years and include the Radiolaria, a group of marine protists, many of which bear delicate mineral skeletons of different natures. Radiolaria are well known for their paleontological signatures, but little is known about the ecology of modern assemblages. They are found from polar to tropical regions, in the sunlit layers of the ocean down to the deep and cold bathypelagic. They are closely involved in the biogeochemical cycles of silica, carbon and strontium sulfate, carrying important amounts of such elements to the deep ocean. However, relatively little is known on the actual extent of genetic diversity or biogeographic patterns. The rapid emergence and acceptance of molecular approaches have nevertheless led to major advances in our understanding of diversity within and evolutionary relationships between major radiolarian groups. Here, we review the state of knowledge relating to the classification, diversity and ecology of extant radiolarian orders, highlighting the substantial gaps in our understanding of the extent of their contribution to marine biodiversity and their role in marine food webs.  相似文献   

9.
Estuaries are among the most productive and economically important marine ecosystems at the land–ocean interface and contribute significantly to exchange of CO2 with the atmosphere. Estuarine microbial communities are major links in the biogeochemical C cycle and flow of C in food webs from primary producers to higher consumers. Considerable attention has been given to bacteria and autotrophic eukaryotes in estuarine ecosystems, but less research has been devoted to the role of heterotrophic eukaryotic microbes. Current research is reviewed here on the role of heterotrophic eukaryotic microbes in C biogeochemistry and ecology of estuaries, with particular attention to C budgets, trophodynamics, and the metabolic fate of C in microbial communities. Some attention is given to the importance of these processes in climate change and global warming, especially in relation to sources and sinks of atmospheric CO2, while also documenting the current paucity of research on the role of eukaryotic microbes that contribute to this larger question of C biogeochemistry and the environment. Some recommendations are made for future directions of research and opportunities of applying newer technologies and analytical approaches to a more refined analysis of the role of C in estuarine microbial community processes and the biogeochemical C cycle.  相似文献   

10.
The fluidized sediment ecosystem off French Guiana is characterized by active physical reworking, diversity of electron acceptors and highly variable redox regime. It is well studied geochemically but little is known about specific microorganisms involved in its biogeochemistry. Based on the biogeochemical profiles and rate kinetics, several possible biotically mediated pathways of the carbon, sulfur and iron cycles were hypothesized. Enrichment studies were set up with a goal to culture microorganisms responsible for these pathways. Stable microbial consortia potentially capable of the following chemolithoautotrophic types were enriched from the environment and characterized: elemental sulfur/thiosulfate disproportionators, thiosulfate-oxidizing ferrihydrite and nitrate reducers, sulfide/ferrous sulfide oxidizers coupled with nitrate and microaerophilic iron oxidizers. Attempts to generate several enrichments (anoxic ammonia oxidation, and sulfide oxidizers with ferric iron or manganese oxide) were not successful. Heterotrophic sulfate and elemental sulfur reduction bacteria are prominent and dominate reductive sulfur transformations. We hypothesize that carbon dioxide fixation coupled with synthesis of organic matter happens mostly via sulfur disproportionation and sulfur species oxidation with iron oxidation playing a minor role.  相似文献   

11.
Diatoms are a major group of phytoplankton that account for approximately 40% of the ocean carbon fixation and the vast majority of biogenic silica production through the construction of their cell walls (termed frustules). These frustules accumulate and are partially preserved in the ocean sediments. Diatom growth and nutrient utilization in high‐nitrate, low‐chlorophyll regions of the world’s oceans are mostly regulated by iron availability. Diatoms acclimate to iron limitation by decreasing cell size. The associated increase in surface area‐to‐volume ratio and decrease in diffusive boundary layer thickness may improve nutrient uptake kinetics. In parallel, cellular silicon (Si) contents are elevated in iron‐limited diatoms relative to nitrogen (N) and carbon (C). Variations in degree of silicification and nutritional requirements of iron‐limited diatoms have been hypothesized to account for higher cellular Si and/or lower cellular N and C, respectively. However, in some diatoms, frustule silicification does not significantly change when cells are iron‐limited. Instead, changes in the Si‐containing valve surface area relative to volume within these diatoms is hypothesized to be responsible for the variations in the cellular Si : N and Si : C ratios. In particular, some examined iron‐limited pennate diatoms have reduced widths relative to their lengths (i.e. lower length‐normalized widths, LNW) compared to iron‐replete cells. In the pennate diatom Fragilariopsis kerguelensis, the mean LNWs of valves preserved in sediments throughout the Southern Ocean (a well‐characterized iron‐limited region) is positively correlated with satellite‐derived, climatological net primary productivity in the overlying waters. Because of the specific morphological changes in pennate diatom frustules in response to iron availability, the valve morphometerics (e.g. LNWs) can potentially be used as a diagnostic tool for iron‐limited diatom growth and relative changes in the Si : N (and Si : C) ratios in extant diatom assemblages as well as those preserved in the sediments.  相似文献   

12.
A distinct urban biogeochemistry?   总被引:1,自引:0,他引:1  
Most of the global human population lives in urban areas where biogeochemical cycles are controlled by complex interactions between society and the environment. Urban ecology is an emerging discipline that seeks to understand these interactions, and one of the grand challenges for urban ecologists is to develop models that encompass the myriad influences of people on biogeochemistry. We suggest here that existing models, developed primarily in unmanaged and agricultural ecosystems, work poorly in urban ecosystems because they do not include human biogeochemical controls such as impervious surface proliferation, engineered aqueous flow paths, landscaping choices, and human demographic trends. Incorporating these human controls into biogeochemical models will advance urban ecology and will require enhanced collaborations with engineers and social scientists.  相似文献   

13.
Nanoplanktonic protists are comprised of a diverse assemblage of species which are responsible for a variety of trophic processes in marine and freshwater ecosystems. Current methods for identifying small protists by electron microscopy do not readily permit both identification and enumeration of nanoplanktonic protists in field samples. Thus, one major goal in the application of molecular approaches in protistan ecology has been the detection and quantification of individual species in natural water samples. Sequences of small subunit ribosomal RNA (SSU rRNA) genes have proven to be useful towards achieving this goal. Comparison of sequences from clone libraries of protistan SSU rRNA genes amplified from natural assemblages of protists by the polymerase chain reaction (PCR) can be used to examine protistan diversity. Furthermore, oligonucleotide probes complementary to short sequence regions unique to species of small protists can be designed by comparative analysis of rRNA gene sequences. These probes may be used to either detect the RNA of particular species of protists in total nucleic acid extracts immobilized on membranes, or the presence of target species in water samples via in situ hybridization of whole cells. Oligonucleotide probes may also serve as primers for the selective amplification of target sequences from total population DNA by PCR. Thus, molecular sequence information is becoming increasingly useful for identifying and enumerating protists, and for studying their spatial and temporal distribution in nature. Knowledge of protistan species composition, abundance and variability in an environment can ultimately be used to relate community structure to various aspects of community function and biogeochemical activity.  相似文献   

14.
Crop plants carry an enormous diversity of microbiota that provide massive benefits to hosts. Protists, as the main microbial consumers and a pivotal driver of biogeochemical cycling processes, remain largely understudied in the plant microbiome. Here, we characterized the diversity and composition of protists in sorghum leaf phyllosphere, and rhizosphere and bulk soils, collected from an 8-year field experiment with multiple fertilization regimes. Phyllosphere was an important habitat for protists, dominated by Rhizaria, Alveolata and Amoebozoa. Rhizosphere and bulk soils had a significantly higher diversity of protists than the phyllosphere, and the protistan community structure significantly differed among the three plant–soil compartments. Fertilization significantly altered specific functional groups of protistan consumers and parasites. Variation partitioning models revealed that soil properties, bacteria and fungi predicted a significant proportion of the variation in the protistan communities. Changes in protists may in turn significantly alter the compositions of bacterial and fungal communities from the top-down control in food webs. Altogether, we provide novel evidence that fertilization significantly affects the functional groups of protistan consumers and parasites in crop-associated microbiomes, which have implications for the potential changes in their ecological functions under intensive agricultural managements.  相似文献   

15.
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that mineralize dissolved iron into intracellular magnetic crystals. After cell death, these crystals are trapped into sediments that remove iron from the soluble pool. MTB may significantly impact the iron biogeochemical cycle, especially in the ocean where dissolved iron limits nitrogen fixation and primary productivity. A thorough assessment of their impact has been hampered by a lack of methodology to measure the amount of, and variability in, their intracellular iron content. We quantified the iron mass contained in single MTB cells of Magnetospirillum magneticum strain AMB-1 using a time-resolved inductively coupled plasma-mass spectrometry methodology. Bacterial iron content depends on the external iron concentration, and reaches a maximum value of ~10−6 ng of iron per cell. From these results, we calculated the flux of dissolved iron incorporation into environmental MTB populations and conclude that MTB may mineralize a significant fraction of dissolved iron into crystals.  相似文献   

16.
Most investigations into ocean ecology and biogeochemistry have tended to focus on marine bacteria, archaea, and protists, while pelagic fungi (mycoplankton) have traditionally been neglected and considered to reside only in association with benthic solid substrates. Nevertheless, recent studies have revealed that pelagic fungi are distributed ubiquitously throughout the water column in every ocean basin and play an active role in the degradation of organic matter and the cycling of nutrients. We review the current status of knowledge on the ecology of mycoplankton and highlight knowledge gaps and challenges. These findings underscore the need to recognize this neglected kingdom as significant contributors to the organic matter cycling and ecology of the oceans.  相似文献   

17.
Peatland pools are freshwater bodies that are highly dynamic aquatic ecosystems because of their small size and their development in organic-rich sediments. However, our ability to understand and predict their contribution to both local and global biogeochemical cycles under rapidly occurring environmental change is limited because the spatiotemporal drivers of their biogeochemical patterns and processes are poorly understood. We used (1) pool biogeochemical data from 20 peatlands in eastern Canada, the United Kingdom, and southern Patagonia and (2) multi-year data from an undisturbed peatland of eastern Canada, to determine how climate and terrain features drive the production, delivering and processing of carbon (C), nitrogen (N), and phosphorus (P) in peatland pools. Across sites, climate (24%) and terrain (13%) explained distinct portions of the variation in pool biogeochemistry, with climate driving spatial differences in pool dissolved organic C (DOC) concentration and aromaticity. Within the multi-year dataset, DOC, carbon dioxide (CO2), total N concentrations, and DOC aromaticity were highest in the shallowest pools and at the end of the growing seasons, and increased gradually from 2016 to 2021 in relation to a combination of increases in summer precipitation, mean air temperature for the previous fall, and number of extreme summer heat days. Given the contrasting effects of terrain and climate, broad-scale terrain characteristics may offer a baseline for the prediction of small-scale pool biogeochemistry, while broad-scale climate gradients and relatively small year-to-year variations in local climate induce a noticeable response in pool biogeochemistry. These findings emphasize the reactivity of peatland pools to both local and global environmental change and highlight their potential to act as widely distributed climate sentinels within historically relatively stable peatland ecosystems.  相似文献   

18.
Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world''s ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world''s ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions.  相似文献   

19.
Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone'' species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.  相似文献   

20.
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号