首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage-inducing factors-A (CIF-A) and -B (CIF-B), purified from bovine bone on the basis of their ability to induce the cartilage phenotype in vitro, are proteins with molecular weights of 26,000 composed of two apparently identical disulfide-linked chains. CIF-A is apparently identical to TGF-beta from human platelets (Seyedin S. M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A. (1986) J. Biol. Chem. 261, 5693-5695). We have now found that, like CIF-A and TGF-beta, CIF-B induces anchorage-independent proliferation of NRK-49F cells when these cells are simultaneously treated with epidermal growth factor. Furthermore, CIF-B competes with CIF-A for the same cell membrane receptors in NRK-49F cells. Partial amino acid sequencing reveals that CIF-B is a distinct molecule with extensive homology to CIF-A/TGF-beta. These results show that CIF-B and TGF-beta are structurally and functionally similar molecules, but differ more from each other than does TGF-beta from different species.  相似文献   

2.
Cartilage-inducing factors A and B (CIF-A and CIF-B) from bovine bone have recently been identified as transforming growth factor-beta (TGF-beta) (Seyedin, S.M., Thompson, A. Y., Bentz, H., Rosen, D. M., McPherson, J. M., Conti, A., Siegel, N. R., Galluppi, G. R., and Piez, K. A. (1986) J. Biol. Chem., 261, 5693-5695) and a unique protein homologous to TGF-beta (Seyedin S. M., Segarini, P. R., Rosen, D. M., Thompson, A. Y., Bentz, H., and Graycar, J. (1987) J. Biol. Chem., 262, 1946-1949), respectively. Although the biological activities of TGF-beta and CIF-B are similar, the divergence of CIF-B from the highly conserved amino acid sequence of TGF-beta prompted an investigation of its receptor binding properties. Three classes of cell surface binding components were identified. Class A has exclusive affinity for TGF-beta; class B has greater affinity for CIF-B; and class C has equal affinity for both proteins. A high molecular weight component, the predominant binding species, was further characterized and shown to consist of two components that are either class B or class C. The differential binding properties of TGF-beta and CIF-B to cell surface components suggest that there are biological activities unique to each of the proteins.  相似文献   

3.
Transforming growth factor beta (TGF-beta) at picomolar concentrations has been previously shown to induce striking alterations of bovine adrenocortical cell differentiated functions, without detectable effect on growth activity (Feige, J.J., Cochet, C., and Chambaz, E. M. (1986) Biochem. Biophys. Res. Commun. 139, 693-700; Hotta, M., and Baird, A. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7795-7799). Adrenocortical cells in culture could bind 125I-labeled TGF-beta through at least two different binding systems. The highest affinity TGF-beta binding exhibited a Kd value of 5.7 X 10(-10) M and a calculated capacity of about 100,000 sites/cell, while the low affinity system yielded values of 4.3 X 10(-8) M and 2 X 10(6) sites/cell, respectively. The 125I-labeled TGF-beta bound to adrenocortical cells could be cross-linked using disuccinimidyl suberate and subsequent electrophoretic analysis revealed that TGF-beta was associated with two major cell components of about 280 kDa and 70-75 kDa, respectively, the latter one being resolved as a labeled doublet. Thus bovine adrenocortical cells exhibit a TGF-beta receptor similar to that defined by Massagué and co-workers (Cheifetz, S., Like, B., and Massagué, J. (1986) J. Biol. Chem. 261,9972-9978) in other cell types. Various growth factors, including fibroblast growth factor, as well as established hormonal activators of adrenocortical cell differentiated functions, such as angiotensin II and adrenocorticotropin, were examined as to their effect on TGF-beta receptor activity. A striking increase in the number of high affinity TGF-beta receptors was selectively elicited by ACTH in the nanomolar concentration range. This effect was time- and dose-dependent and was mimicked by cell treatment with dibutyryl cyclic AMP or forskolin. However, the ACTH-induced increase in receptor number was not impaired when protein synthesis was blocked. It is concluded that bovine adrenocortical cells are typical target cells for TGF-beta. This endocrine system represents a model in which, for the first time, the level of TGF-beta receptor is shown to be under hormonal regulation through a cyclic AMP-dependent pathway.  相似文献   

4.
《The Journal of cell biology》1984,99(6):1901-1906
In a previous study, using co-cultures of embryonic bone rudiments stripped of periosteum, and mononuclear phagocytes of various sources, we found that multinucleated mineral-resorbing osteoclasts developed in vitro from radiosensitive mouse bone marrow mononuclear phagocytes (BMMP). (Burger, E. H., J. W. M. van der Meer, J. S. van de Gevel, C. W. Thesingh, and R. van Furth, 1982, J. Exp. Med. 156:1604-1614). In the present study, this co-culture technique was used to analyze the influence of bone-forming cells on osteoclast formation and bone resorption by BMMP or peritoneal exudate cells (PEC). BMMP or PEC were co-cultured with liver or dead bone, i.e., in the presence or absence of liver bone-forming cells. Mineral resorption and osteoclast formation were monitored via 45Ca release from prelabeled live or dead bone followed by histology. Osteoclasts developed from precultured BMMP as indicated by [3H]thymidine labeling, but only in live and not in dead bone. They formed readily from BMMP but only erratically, and after a longer culture period, from PEC. Macrophages from BMMP and PEC invaded live and dead bone rudiments but did not resorb the intact mineralized matrix. In contrast, ground bone powder was resorbed avidly by both cell populations, without formation of osteoclasts. We conclude that live bone-forming cells are required for osteoclast formation from progenitors. Live bone is only resorbed by osteoclasts, and not by macrophages. Osteoclast progenitors are abundant in cultures of BMMP but scarce in PEC, which makes a direct descendance of osteoclasts from mature macrophages unlikely.  相似文献   

5.
Regulation of osteogenesis by fetuin.   总被引:5,自引:0,他引:5  
  相似文献   

6.
Type beta transforming growth factor (TGF-beta) is found in large amounts in bone tissue, and is a potent mitogen for osteoblast-enriched cell cultures obtained from fetal rat parietal bone. Because other local and systemic factors may be presented to bone cells simultaneously with TGF-beta, it is important to understand the effects of this complex growth regulator in such circumstances. Unlike the effects observed in many tissue systems, TGF-beta does not invariably inhibit the mitogenic response of bone cells to other growth promoters. In contrast, other factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and type alpha tumor necrosis factor (TNF-alpha) limit the response of osteoblastic bone cells to TGF-beta. TGF-beta is a much weaker mitogen for fibroblastic cells obtained from fetal rat bone, whereas fetal bovine serum, EGF, bFGF, and TNF-alpha are more potent stimulators. In addition, TGF-beta does not significantly impair the response of the fibroblastic bone cells to the other tested agents. These findings reinforce a role of TGF-beta as an anabolic bone growth regulator, and suggest that its function may be modified by other local or systemic agents that can also affect bone cells.  相似文献   

7.
8.
9.
Transforming growth factor beta (TGF-beta), a potent regulator of bone formation, has bifunctional effects on osteoblast replication and biochemical activity that appear differentiation dependent. We now show that cell surface binding sites for TGF-beta vary markedly among fibroblasts, bone-derived cells, and highly differentiated osteosarcoma cultures from fetal rats. Expression of betaglycan and type II receptors decline relative to type I receptor expression in parallel with an increase in osteoblast-like activity, predicting that the ratio among various TGF-beta binding sites could influence how its signals are perceived. Bone morphogenetic protein 2 (BMP-2), which induces osteoblast function, does not alter TGF-beta binding or biochemical activity in fibroblasts and has only small effects in less differentiated bone cells. In contrast, BMP-2 rapidly reduces TGF-beta binding to betaglycan and type II receptors in osteoblast-enriched primary cell cultures and increases its relative binding to type I receptors in these cells and in ROS 17/2.8 cultures. Pretreatment with BMP-2 diminishes TGF-beta-induced DNA synthesis in osteoblast-enriched cultures but synergistically enhances its stimulatory effects on either collagen synthesis or alkaline phosphatase activity, depending on the present state of bone cell differentiation. Therefore, BMP-2 shifts the TGF-beta binding profile on bone cells in ways that are consistent with progressive expression of osteoblast phenotype, and these changes distinguish the biochemical effects mediated by each receptor. Our observations indicate specific stepwise actions by TGF-beta family members during osteoblast differentiation, developing in part from changes imprinted by BMP-2 on TGF-beta receptor stoichiometry.  相似文献   

10.
TGF-beta has been shown to inhibit and stimulate osteoclastogenesis. The purpose of this study was to evaluate the effects of TGF-beta in hematopoietic cell cultures stimulated with RANKL and M-CSF. In cocultures of hematopoietic cells and BALC cells (a calvarial-derived cell line), TGF-beta inhibited tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell formation. In contrast, TGF-beta enhanced TRAP-positive multinucleated cell formation up to 10-fold in hematopoietic cell cultures containing few osteoblastic/stromal cells. Likewise, TGF-beta increased the number of calcitonin receptor (CTR)-positive multinucleated and mononucleated cells in a concentration-dependent manner. An increase in cell size and multinuclearity was also observed in the presence of TGF-beta. The stimulatory effects of TGF-beta were dependent on the presence of M-CSF and RANKL. When differentiated on bovine cortical bone slices, these cells formed resorption lacunae. These results suggest that TGF-beta has a direct stimulatory effect on osteoclastogenesis in hematopoietic cells treated with RANKL and M-CSF.  相似文献   

11.
Recently, the simian type 1 transforming growth factor beta (TGF-beta 1) cDNA was expressed at high levels in Chinese hamster ovary (CHO) cells by dihydrofolate reductase-induced gene amplification (L.E. Gentry, N.R. Webb, G.J. Lim, A.M. Brunner, J.E. Ranchalis, D.R. Twardzik, M.N. Lioubin, H. Marquardt, and A.F. Purchio, Mol. Cell. Biol. 7:3418-3427, 1987). We have now purified and characterized the recombinant proteins released by these cells. Analyses of the precursor proteins by amino acid sequencing identified potentially important proteolytic processing sites. Signal peptide cleavage occurs at the Gly-29-Leu-30 peptide bond of pre-pro-TGF-beta 1, yielding pro-TGF-beta 1 (30 to 390). In addition, proteolytic processing of the precursor to yield mature TGF-beta 1 occurs at the dibasic cleavage site immediately preceding Ala-279, indicating that CHO cells possess the appropriate processing enzyme. Greater than 95% of the biological activity detected in the conditioned medium of the CHO transfectant was due to mature, properly processed growth factor. Highly purified recombinant TGF-beta 1 had the same specific biological activity as natural TGF-beta 1. The concentration of TGF-beta 1 required for half-maximal inhibition of Mv1Lu mink lung epithelial cell growth was approximately 1 to 2 pM. Purified precursor inhibited mink lung cell proliferation at 50 to 60 pM concentrations. The purified precursor preparation was shown to consist of pro-TGF-beta 1 (30 to 390), the pro region of the precursor (30 to 278), and mature TGF-beta 1 (279 to 390) interlinked by at least one disulfide bond with the pro portion of the precursor. These recombinant forms of TGF-beta1 should prove useful for further structural and functional studies.  相似文献   

12.
The conversion of latent transforming growth factor beta (LTGF-beta) to the active species, transforming growth factor beta (TGF-beta), has been characterized in heterotypic cultures of bovine aortic endothelial (BAE) cells and bovine smooth muscle cells (SMCs). The formation of TGF-beta in co-cultures of BAE cells and SMCs was documented by a specific radioreceptor competition assay, while medium from homotypic cultures of BAE cells or SMCs contained no active TGF-beta as determined by this assay. The concentration of TGF-beta in the conditioned medium of heterotypic co-cultures was estimated to be 400-1,200 pg/ml using the inhibition of BAE cell migration as an assay. Northern blotting of poly A+ RNA extracted from both homotypic and heterotypic cultures of BAE cells and SMCs revealed that BAE cells produced both TGF-beta 1 and TGF-beta 2, while SMCs produced primarily TGF-beta 1. No change in the expression of these two forms of TGF-beta was apparent after 24 h in heterotypic cultures. Time course studies on the appearance of TGF-beta indicated that most of the active TGF-beta was generated within the first 12 h after the establishment of co-cultures. The generation of TGF-beta in co-cultures stimulated the production of the protease inhibitor plasminogen activator inhibitor-1 (PAI-1). The inclusion of neutralizing antibodies to TGF-beta in the co-culture medium blocked the observed increase in PAI-1 levels. The increased expression of PAI-1 subsequent to TGF-beta formation blocked the activation of the protease required for conversion of LTGF-beta to TGF-beta as the inclusion of neutralizing antibodies to PAI-1 in the co-culture medium resulted in prolonged production of TGF-beta. This effect was lost upon removal of the PAI-1 antibodies. Thus, the activation of LTGF-beta appears to be a self-regulating system.  相似文献   

13.
A specific radioimmunoassay for type beta transforming growth factor (TGF-beta) was developed and used to show that human platelets treated with thrombin release TGF-beta as a consequence of degranulation. The thrombin concentrations required to induce release of TGF-beta parallel those concentrations that release the alpha-granule marker, beta-thromboglobulin. Related studies showed that TGF-beta acts on early passage, explant cultures of bovine aortic smooth muscle cells by inhibiting the effect of mitogens on proliferation of subconfluent cell monolayers yet synergizing with mitogens to stimulate growth of the same cells when cultured in soft agar. The results show that primary cultures of bovine aortic smooth muscle cells and established normal rat kidney cells behave similarly with regard to TGF-beta action. Moreover, the data suggest that platelet-mediated proliferation of aortic smooth muscle cells in vivo may not result solely from the stimulatory effect of platelet-derived growth factor (PDGF), but rather from an interaction of platelet factors which has the intrinsic ability to limit as well as stimulate mitosis.  相似文献   

14.
Transforming growth factor-beta (TGF-beta) is a multifunctional polypeptide, abundant in bone, that regulates both proliferation and differentiation of a wide variety of cells, but its role in osteoclast differentiation remains controversial. We have recently shown that long-term cultures of human cord blood monocytes, in the presence of 1,25 dihydroxycholecalciferol (1,25-(OH)2D3), give rise to cells that express two markers of the osteoclast phenotype, namely, the vitronectin receptor (VNR) and the calcitonin receptor (CTR). TGF-beta enhanced the proportion of cells expressing the VNR. In the present study, we investigated the effect of TGF-beta on the expression of CTR in cord blood monocytes cultured during 3 weeks in the presence of 1,25-(OH)2D3. When added within the first 2 weeks of culture, TGF-beta (500 pg/ml) significantly decreased the cell protein content. TGF-beta alone did not stimulate basal cAMP production. The 10 nM-sCT-stimulated cAMP production was enhanced by increasing TGF-beta concentrations from 50 pg/ml to 1,000 pg/ml: for 500 pg/ml TGF-beta, it was 294 +/- 28% vs. 140 +/- 25% for control cultures (p less than 0.01). The sCT dose-response curves showed a higher cAMP production from 10(-9) M to 10(-7) M of sCT in the presence of 500 pg/ml TGF-beta than in control cultures. The increase was 325 +/- 36% in the presence of TGF-beta and 195 +/- 13% in the absence of TGF-beta, for 10(-7) M sCT (p less than 0.01). This effect of TGF-beta on cAMP production was not observed either when it was added to monocyte cultures the last day or 2 hours before the end of the culture or in MCF7, a human breast cancer cell line that expresses CTR. [125I]-sCT binding studies performed on confluent cells showed similar Kd in control and TGF-beta-treated cells. By contrast, the CTR number was significantly increased in the presence of TGF-beta: 6.1 +/- 2 x 10(4) receptors per cell in control cultures and 28.8 +/- 8.1 x 10(4) receptors per cell in TGF-beta-treated cultures (p less than 0.05). It is thus suggested that TGF-beta increases the number of CTR of these cells that have other features of preosteoclasts. The role of this cytokine on the process of osteoclast differentiation and in bone resorption is thus emphasized.  相似文献   

15.
This study was designed to address three specific questions in human B cells. First, to determine whether transforming growth factor-beta (TGF-beta)2 has similar biologic effects on B cell function as does TGF-beta 1. Second, to test the hypothesis that TGF-beta 1 is an autocrine growth and differentiation inhibitor. Finally, because multiple receptor species for TGF-beta have been identified on other cell types, to determine by chemical cross-linking and competitive binding studies the nature of the TGF-beta 1 R present on normal and transformed B cells. Exogenous TGF-beta 2 was found to be functionally similar to TGF-beta 1 in its inhibition of factor dependent normal B cell proliferation and Ig secretion. When an antibody, specific for the active form of TGF-beta 1, was added in conjunction with IL-2 to previously stimulated B cell cultures, there was a 14.4 +/- 4.2% increase in B cell proliferation, a 22 +/- 6% increase in IgG production, and a 33 +/- 8.6% increase in IgM production when compared to control cultures. Chemical cross-linking of 125I-TGF-beta 1 to normal B cell membranes identified two major cross-linked species of 65 and 90 kDa. A fivefold excess of unlabeled TGF-beta 1 competitively inhibited the detection of both of these bands while a 50-fold excess of unlabeled TGF-beta 2 did not inhibit the 90-kDa band and only partially inhibited (60%) of the 65-kDa band. Chemical cross-linking of 125I-TGF-beta 1 to transformed B cell membranes identified only a single band of 60 kDa. Scatchard plot analysis of 125I-TGF-beta 1 binding to normal B cells that was competitively inhibited with increasing concentrations of unlabeled TGF-beta 1 revealed both high and low affinity binding sites whereas analysis of 125I-TGF-beta 1 binding in the presence of increasing concentrations of unlabeled TGF-beta 2 revealed only low affinity sites. These findings demonstrate that TGF-beta 2 is as effective as TGF-beta 1 in inhibiting human B cell function, that small amounts of active TGF-beta 1 are present endogenously in in vitro cultures which partially inhibit B cell function, that two major TGF-beta 1 R cross-linked complexes of 65 and 90 kDa are present on normal B cells, and that transformation of B cells may be accompanied by changes in the TGF-beta 1 R.  相似文献   

16.
We have explored the hypothesis that hypertrophy of vascular smooth muscle cells may be regulated, in part, by growth inhibitory factors that alter the pattern of the growth response to serum mitogens by characterizing the effects of the potent growth inhibitor, transforming growth factor-beta (TGF-beta), on both hyperplastic and hypertrophic growth of cultured rat aortic smooth muscle cells. TGF-beta inhibited serum-induced proliferation of rat aortic smooth muscle cells (ED50 = 2 pM); this is consistent with previously reported observations in bovine aortic smooth muscle cells (Assoian et al. 1982. J. Biol. Chem. 258:7155-7160). Growth inhibition was due in part to a greater than twofold increase in the cell cycle transit time in cells that continued to proliferate in the presence of TGF-beta. TGF-beta concurrently induced cellular hypertrophy as assessed by flow cytometric analysis of cellular protein content (47% increase) and forward angle light scatter (32-50% increase), an index of cell size. In addition to being time and concentration dependent, this hypertrophy was reversible. Simultaneous flow cytometric evaluation of forward angle light scatter and cellular DNA content demonstrated that TGF-beta-induced hypertrophy was not dependent on withdrawal of cells from the cell cycle nor was it dependent on growth arrest of cells at a particular point in the cell cycle in that both cycling cells in the G2 phase of the cell cycle and those in G1 were hypertrophied with respect to the corresponding cells in vehicle-treated controls. Chronic treatment with TGF-beta (100 pM, 9 d) was associated with accumulation of cells in the G2 phase of the cell cycle in the virtual absence of cells in S phase, whereas subsequent removal of TGF-beta from these cultures was associated with the appearance of a significant fraction of cycling cells with greater than 4c DNA content, consistent with development of tetraploidy. Results of these studies support a role for TGF-beta in the control of smooth muscle cell growth and suggest that at least one mechanism whereby hypertrophy and hyperploidy may occur in this, as well as other cell types, is by alterations in the response to serum mitogens by potent growth inhibitors such as TGF-beta.  相似文献   

17.
18.
The regulation of vascular endothelial cell behavior during angiogenesis and in disease by transforming growth factor-beta(1) (TGF-beta(1)) is complex, but it clearly involves growth factor-induced changes in extracellular matrix synthesis. Proteoglycans (PGs) synthesized by endothelial cells contribute to the formation of the vascular extracellular matrix and also influence cellular proliferation and migration. Since the effects of TGF-beta(1) on vascular smooth muscle cell growth are dependent on cell density, it is possible that TGF-beta(1) also directs different patterns of PG synthesis in endothelial cells at different cell densities. In the present study, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(3)H]glucosamine, [(35)S]sulfate, or (35)S-labeled amino acids in the presence of TGF-beta(1). The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain, heparitinase, or chondroitin ABC lyase. These experiments indicate that the effect of TGF-beta(1) on vascular endothelial cell PG synthesis is dependent on cell density. Specifically, TGF-beta(1) induced an accumulation of small chondroitin/dermatan sulfate PGs (CS/DSPGs) with core proteins of approximately 50 kDa in the medium of both dense and sparse cultures, but a cell layer-associated heparan sulfate PG with a core protein size of approximately 400 kDa accumulated only in dense cultures. Moreover, only in the dense cell cultures did TGF-beta(1) cause CS/DSPG hydrodynamic size to increase, which was due to the synthesis of CS/DSPGs with longer glycosaminoglycan chains. The heparan sulfate PG and CS/DSPG core proteins were identified as perlecan and biglycan, respectively, by Western blot analysis. The present data suggest that TGF-beta(1) promotes the synthesis of both perlecan and biglycan when endothelial cell density is high, whereas only biglycan synthesis is stimulated when the cell density is low. Furthermore, glycosaminoglycan chains are elongated only in biglycan synthesized by the cells at a high cell density.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) modulates growth and differentiation in many cell types and is abundant in bone matrix. We recently showed that human cord blood monocytes cultured in the presence of 1,25(OH)2D3 acquire some features of osteoclast precursors. Since TGF-beta has been shown to influence bone resorption in organ culture, we have studied the effect of TGF-beta (1-1,000 pg/ml) on cord blood monocyte cultures. These cells were cultured on plastic substrate during 3 weeks in the presence of 20% horse serum and 10(-9) M 1,25(OH)2D3. TGF-beta, from a concentration of 10 pg/ml in the culture medium, decreased in a dose dependent manner the formation of multinucleated cells. At a concentration of TGF-beta of 1 ng/ml, the multinucleated cells were reduced to 2.1% +/- 0.3%, compared to 19.3% +/- 1.5% in control cultures. TGF-beta inhibited in a dose-dependent manner the proliferation of cord blood monocytes as assessed by 3H-thymidine incorporation at 7 and 14 days of culture. The fusion index was also decreased by 3 weeks of treatment with TGF-beta. Indomethacin did not reverse the inhibitory effects of TGF-beta. The expression of the osteoclastic phenotype was assessed using two different antibodies: 23C6, a monoclonal antibody directed against the vitronectin receptor, which is highly expressed by osteoclasts but not by adult monocytes, and an antibody to HLA-DR, which is not present on osteoclast. TGF-beta decreased the expression of HLA-DR and increased in a dose-dependent manner the proportion of 23C6-labeled cells; these results suggest that TGF-beta could modulate a differentiation effect to the osteoclastic phenotype. However, when cord blood monocytes were cultured on devitalized rat calvariae prelabeled with 45Ca, TGF-beta did not induce any 45Ca release from bone cultured with monocytes, suggesting that full osteoclastic differentiation was not achieved. These results emphasize the complex role of TGF-beta in the local regulation of bone cell differentiation and in bone remodeling.  相似文献   

20.
Transforming growth factor (TGF) type beta, a potent growth modulator, has recently been shown to inhibit the proliferation and function of several types of immune cells. This report investigates the effect of human platelet purified TGF-beta on CSF-1-induced proliferation in liquid cultures. We used two cell types to study TGF-beta effects, bone marrow precursors and a c-myc partially transformed CSF-1-dependent macrophage cell line designated BMM-8. We found that CSF-1-dependent proliferation of both cell types was strongly inhibited by TGF-beta in a dose-dependent manner. Approximately 1.6 and 8 pM TGF-beta inhibited 50% of CSF-1 proliferation of the bone marrow precursors and BMM-8, respectively. Inhibition appeared to be reversible, as bone marrow and BMM-8 cells proliferated in response to CSF-1 after preincubation of the cells in TGF-beta. Interestingly, inhibition of hematopoietic cells was observed only after a lag period of 24 to 48 h after onset of cultures. TGF-beta inhibition was partially diminished when increasing amounts of CSF-1 were added to the cultures. TGF-beta inhibition did not involve secondary inhibitory factors such as IFN or PG, both of which have been previously shown to suppress CSF responsiveness. Finally, flow cytometric analysis of the cell cycle indicated that within 48 h, TGF-beta-treated BMM-8 cells were prevented from entering S phase. These results suggest that TGF-beta may play an important role in the negative regulation of macrophage production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号