首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Summary We investigated the combined effects of human recombinant interleukin 2 (IL-2) and cyclophosphamide (CY) on s.c. transplanted 3LL lung carcinoma in C57BL/6 mice. A total of 95% of the tumors were competely cured when CY (150 mg/kg, i.v.) was given on day 5 (5 days after tumor implantation) and IL-2 (5×104 Jurkat Units/day, i.p.) was then combined with it between day 6 and day 15. CY alone brought about the complete regression of tumors, although 60% of the mice died of local recurrence and pulmonary metastasis; IL-2 alone had no therapeutic effect. Satisfactory effects from the combination of CY and IL-2 were also obtained by 5 days administration of IL-2 between days 11 and 15, initiated 6 days after CY treatment, but not by that given before CY (days 1–5) or 1 day after CY (days 6–10). No therapeutic effects from IL-2 were observed when it was combined with other types of chemotherapy that showed not therapeutic effects by themselves. Nor were we able to observe any transplantation resistance to the rechallenge of 3LL tumor in cured mice. We particularly examined the lymphokine-activated killer (LAK) cells as we suspected that these were responsible for the development of active effector cells in the treated mice. LAK cell activity in fresh spleen cells was detected in mice treated with IL-2 alone but not in untreated mice nor in those treated with CY alone or CY plus IL-2. The number of LAK precursor cells in the spleen had increased on day 8 and on day 13 in untreated mice with 3LL, as compared with the incidence in normal mice, while the number of cells had decreased by day 18. On the other hand LAK precursor cells were suppressed on day 8 and tended to recover thereafter in CY-treated mice. Adoptively transferred LAK cells were found to accumulate in CY-treated tumors 2.5 times more densely than in untreated tumors. The preferential accumulation of LAK cells that had been activated systemically by the appropriately timed administration of IL-2 in tumor tissue was followed by the improved effects obtained by combined treatment with CY and IL-2.Supported in part by Grants-in-Aid for Cancer Research from the Japanese Ministry of Education, Science and Culture and from the Japanese Ministry of Health and Welfare  相似文献   

2.
Summary Spleen cells of C57BL/6N mice bearing lung metastases were induced to the cytotoxic state by subcutaneous injection of recombinant human interleukin-2 (IL-2) at a minimum dose of 5×104 U/mouse three times a day for 3 consecutive days. A single intraperitoneal injection of lentinan alone at concentrations of up to 10 mg/kg body weight did not render spleen cells cytotoxic to P-29 cells, but a combination of subthreshold doses of these agents (5×104 U/ml IL-2 and 5 mg/kg lentinan) induced significant in vivo lymphokine-activated killer activity in spleen cells of tumor-bearing mice. Similarly, spleen cells from mice treated i.p. with lentinan became cytotoxic on in vitro treatment with IL-2. The in vitro responsiveness of spleen cells to IL-2 was maximal 3 days after i.p. injection of lentinan. Synergism between IL-2 and lentinan was also observed in mice bearing spontaneous lung micrometastases: neither IL-2 (<5×104 U/mouse) nor lentinan (<2.5 mg/kg) alone had a therapeutic effect, but multiple injections of IL-2 with a single injection of lentinan resulted in significant inhibition of spontaneous pulmonary metastases. From these results we conclude that IL-2 and lentinan in combination are more effective than either one alone for inducing destruction of pulmonary metastases.  相似文献   

3.
Combinations of chemotherapy and interleukin-2 (IL-2) aimed at improving therapeutic efficacy in cancer patients have generally proved disappointing. Although chemotherapy blocks tumor growth and sometimes boosts immune functions, most drugs are immunosuppressive, at least transiently. Therefore, it is reasonable to assume that maximal exploitation of the immunostimulatory and antitumor activity of both modalities requires careful coordination of chemotherapy and IL-2 timing. We analyzed the temporal effect of 5-fluorouracil (5-FU, 100–120 mg/kg), cyclophosphamide (CY, 100 mg/kg), Adriamycin (8 mg/kg) and dacarbazine (100 mg/kg) on the activation of natural killer/lymphokine-activated killer (NK/LAK) cells by IL-2 in several strains of euthymic mice and in athymic nude mice. Following in vivo or in vitro exposure to IL-2 1–15 days after chemotherapy, the total lytic activity of the spleen and the number of LAK precursors (LAK-p) were measured. In euthymic mice injected with IL-2 (5×104 Cetus units twice daily for 4–5 days), 5-FU augmented (up to 37-fold, days 1–9) and CY reduced (up to day 6) LAK activity, as compared with that in the IL-2 control. In bulk cultures containing IL-2 (1000 CU/ml, 3–4 days), both 5-FU and CY reduced LAK activity of euthymic mice splenocytes for up to 6 days after chemotherapy, which was followed on day 9 by full recovery. In splenocytes of nude mice, 5-FU increased and CY diminished LAK activation in bulk cultures, starting 3 days after chemotherapy. In athymic mice, 5-FU markedly augmented the total number of LAK-p/spleen (up to 30-fold, days 3–9), as determined by limiting-dilution cultures with IL-2 (for 7–8 days). In euthymic mice, in contrast, LAK-p levels decreased for up to 6–9 days after treatment with 5-FU, Adriamycin or dacarbazine, later recovering to pretreatment levels, whereas CY markedly increased LAK-p (up to 15-fold) when administered 6–12 days before limiting-dilution culture initiation. The effect of chemotherapy on LAK and NK activity was essentially similar. In other experiments, a subset of asialoGM1-LAK-p was found in the spleens of 5-FU-treated mice, but not in untreated mice. Our results suggest that the immunomodulatory effect of chemotherapy on NK/LAK activity in mice is variable and largely depends on the drug itself, the interval between chemotherapy and IL-2 administration, the strain of mice and the assay used.  相似文献   

4.
Summary Cimetidine, an H2 histamine receptor antagonist, is a potent immunomodulating agent, which acts by inhibiting suppressor T lymphocyte function. The present work investigated the effect, if any, of cimetidine on interleukin-2 (IL-2)-induced natural killer (NK) and lymphokine-activated killer (LAK) cell activities, and on in vivo antitumor activity using syngeneic colon 26 adenocarcinoma as the model. Mimicking the clinical conditions, all in vitro experiments were evaluated with the splenocytes prepared from tumor-bearing BALB/c mice. Ten days after subcutaneous inoculation of tumor cells (5 × 105), animals were treated intraperitoneally daily with phosphate-buffered saline (PBS), cimetidine (2 mg kg–1 day–1), IL-2 (300 000 IU/day), or cimetidine plus IL-2 for 7 consecutive days. The treatment of IL-2 plus cimetidine increased NK and LAK cell activities significantly and synergistically at the end of the treatment (i.e. on day 18) as well as 1 week after the treatment (i.e. on day 25), in comparison with those of the control groups (PBS, cimetidine alone, IL-2 alone). Also, in vivo antitumor activity, as analyzed by a Kaplan-Meier life table with the log-rank test, revealed a significantly prolonged survival in the group treated with IL-2 plus cimetidine compared to the control groups. Phenotyping performed on the murine splenocytes on day 18 indicated a significant reduction in Lyt2-positive cells in the cimetidine-treated group in comparison with the PBS group. A significant increase in asialo GM1-positive cells and IL-2-receptor-positive cells was detected in the group treated with IL-2 plus cimetidine in comparison with the PBS and IL-2 control groups. Therefore, this study indicates a synergistic enhancement of IL-2-induced NK and LAK cell activities in tumor-bearing hosts by cimetidine, a noncytotoxic inhibitor of suppressor T function, and a significantly prolonged survival of tumor-bearing animals treated by IL-2 plus cimetidine. It also suggests the clinical potential of combination therapy of IL-2 with cimetidine.  相似文献   

5.
Summary The synergistic antitumor effect of interleukin-2(IL-2)-cultured tumor-bearer spleen cells (cultured lymphocytes) and immune fresh spleen cells was examined. Tumor-bearer cultured lymphocytes were obtained by culturing BALB/c spleen cells from syngeneic MOPC104E-tumor-bearing mice for 11 days with crude IL-2 and a soluble tumor extract. These cultured lymphocytes had weak antitumor activity when transferred i.p. into tumor-bearing mice that had been inoculated i.p. with 105 tumor cells 5 days previously. Immune fresh spleen cells, obtained from mice in complete remission after the treatment with cyclophosphamide, also had weak antitumor activity when transferred at the same schedule. The cultured cells and the fresh cells, mixed together before transfer, significantly augmented the therapeutic effect. At least 1×107 tumor-bearer cultured lymphocytes and 4×107 immune cells were needed for the synergistic effect. A tumor-specific combination was needed for both cultured and fresh cells. The effective subpopulation of tumor-bearer cultured lymphocytes was a cytotoxic one from an Lyt2+ precursor, and that of the immune fresh spleen cells was noncytotoxic, Lytl+ and Lyt2+ T-cells.A similar synergistic effect was also observed during in vitro coculture of tumor-bearer and immune cells. Cytotoxicity, as assessed by the 51Cr-release test, of tumor-bearer IL-2-cultured lymphocytes was maintained most effectively after 3 or 4 days of culture without IL-2 when the lymphocytes were cocultured with immune fresh spleen cells and tumor cells.  相似文献   

6.
Summary The antitumor effects of chemotherapy, recombinant human interleukin-2 (IL-2), recombinant human interferon A/D (IFN), allogeneic human lymphokine-activated killer (LAK) cells, and antitumor monoclonal antibody (mAb), administered alone and in various combinations, were tested in athymic nude mice carrying human tumor xenografts. Treatment began 6–18 days after i.v. or i.p. inoculation of colorectal carcinoma or melanoma cell lines, when macroscopic growths were evident. Chemotherapy consisted of two or three courses of 5-fluorouracil (5-FU) or dacarbazine. IL-2 and/or IFN were administered three to five times weekly for 1–3 weeks, usually starting 2–5 days after chemotherapy. Human LAK cells were infused once or twice weekly for 2 or 3 weeks concurrently with IL-2. In some experiments, murine anticolorectal carcinoma mAb (SF25) was administered. In both tumor systems, chemotherapy alone or immunotherapy alone (IL-2, IL-2 + LAK cells, IFN, IL-2 + IFN ± LAK cells) had little or no therapeutic effects. Additive effects were obtained by combining chemotherapy with IL-2 and LAK cells or with IL-2 and IFN. In the majority of the experiments, the most effective combination was chemotherapy + IL-2 + IFN + LAK cells. Treatment with mAb was beneficial in the colorectal carcinoma system when combined with 5-FU + IL-2 or 5-FU + IL-2 + IFN. Homing experiments with radiolabeled human and mouse LAK cells injected i.v. showed increased early accumulation in the liver and lungs, whereas freshly explanted mouse splenocytes localized mostly in the spleen and liver. The tissue distribution pattern of human LAK cells was similar in normal and tumor-bearing mice (with lung metastases). These findings suggest that combination of chemotherapy with cytokines and LAK cells can be partially effective for advanced solid human tumors even in the absence of the host's T-cell immune response. Preliminary experiments showed that tumor-specific, anti-melanoma T-cell clones were effective in local (s.c.) tumor growth inhibition (Winn assay) following coinjection with the autologous tumor cells.  相似文献   

7.
Summary We have used a BALB/c colonic adenocarcinoma (C-26) to evaluate the therapeutic potential of recombinant interleukin-2 (rIL-2) at high and low dosages in combination with or without lymphokine-activated killers (LAK) or tumor-specific, immune lymphocytes in either an adjuvant spontaneous or an artificial metastasis system. Most (80%) of the mice that underwent s.c. C-26 tumor excision were shown to die of spontaneous metastasis with lung involvement by 1–4 months after excision. Postsurgical systemic treatment with low-dose rIL-2 (3 × 104 U/day, i.p.) increased the survival rate to 31% as compared to 21% (not significant) in excised controls while administration of high-dose rIL-2 (8 × 104 U/day) led to 53% survival (P <0.01). Both LAK cells and C-26-tumor-immune lymphocytes given during rIL-2 treatment significantly increased the effects of rIL-2 at the low but not at the high-dose, with tumor-immune effectors resulting in the highest percentage (63%) of cures. When mice bearing 3-day artificial lung metastases of C-26 cells were treated with low- or high-dose rIL-2, in combination with or without LAK or tumor-immune lymphocytes, a highly significant reduction or abrogation of the number of lung foci was observed with all treatments, including those involving or tumor-immune lymphocytes alone. Assessment of survival benefit in these mice, however, showed survival prolongation, with 20% cures achieved by low-dose rIL-2 alone and up to 65% cures by LAK in combination with low-dose rIL-2. In this system of artificial metastasis high-dose rIL-2 alone increased the survival time but failed to cure the animals, and the addition of LAK was ineffective whereas that of tumor-immune lymphocytes led to 80% cure. These results suggest that tumorimmune lymphocytes are more effective than LAK when combined with rIL-2 and that caution is necessary in extrapolating findings obtained in artificial metastasis models.  相似文献   

8.
In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44lo) or elevated (CD44hi) expression of CD44 are generated and that the CD44hi cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.  相似文献   

9.
Interleukin 2 (IL 2) in high concentration induces lymphocytes to become nonspecifically cytolytic to a wide variety of tumor targets. We evaluated the therapeutic potential of such lymphokine-activated killer (LAK) cells in vivo and high-dose II 2 in vivo against disseminated murine leukemia. To quantitate the potential anti-leukemia effect of LAK cells in vivo, B6 mice were injected i.p. with graded doses of FBL-3 leukemia cells followed by LAK cells. In this Winn-type assay, 1 X 10(7) LAK cells were able to prevent the outgrowth of 1 X 10(2) FBL-3 cells in only 50% of mice and did not prevent the outgrowth of 1 X 10(6) tumor cells. Thus LAK cells, highly cytolytic to FBL-3 in vitro, mediated only a limited anti-tumor effect when applied directly to leukemia cells in vivo. LAK cells used as an adjunct to chemotherapy induced a small but non-curative effect against FBL-3, however. In this circumstance, LAK cells were markedly less effective than were immune spleen cells from mice previously sensitized to FBL-3. To test the anti-leukemia effect of high-dose IL 2 in vivo, B6 mice were inoculated with 5 X 10(6) FBL-3 cells followed by repeated doses of IL 2 at dose levels shown to induce LAK in vivo. "LAK-inducing" IL 2 doses on days 5 to 9 after FBL-3 inoculation, when tumor was disseminated, cured 50% of the mice. Treatment on days 5 to 9 was far more effective than on days 0 to 4, implying that the evolution of a host-tumor interaction was essential for the therapeutic effect of IL 2. Mice cured of FBL-3 by high-dose IL 2 were found to be immune to FBL-3, suggesting that tumor eradication resulted from a collaboration between LAK activity and tumor-specific immunity.  相似文献   

10.
Effects of a streptococcal preparation, OK-432, on precursors of lymphokine-activated killer (LAK) cells were observedin vivo. Total number of splenocytes and the ratio of asGM 1 + cells increased gradually after i.v. administration of OK-432, reaching their peaks at 3 to 4 days. It was found that as GM 1 + cells were nonadherent and large in size. There were little differences in the ratios of Thy-1+, Lyt-2+, and L3T4+ cells before and after OK-432 treatment. Mice were injected i.p. with recombinant interleukin 2 (rIL-2) at a dose of 5 × 104 U per mouse 4 days after OK-432 administration and LAK activity in their splenocytes was examined using natural killer (NK) resistant EL-4 target cells. Splenocytes in mice treated with both OK-432 and rIL-2 showed higher LAK activity than those in mice treated with rIL-2 alone.In vivo treatment with anti asGM, antibody prior to rIL-2 injection abolished completely such augmentation of LAK activity in OK-432 treated mice. These results demonstrated that asGM 1 + LAK precursor cells induced by OK-432 were effectively differentiated into LAK cells by rIL-2.  相似文献   

11.
Summary Spleen cells of BALB/c mice that had been inoculated with syngeneic plasmacytoma MOPC 104E were cultured for 11 days in T-cell growth factor (TCGF) and ultrasonicated tumor extract (USE). Cultured lymphocytes (MOPC-CL) possessed three-fold more lytic units than normal spleen cells cultured in TCGF without USE (N-CL). Moreover, the in vivo neutralization assay suggested that MOPC-CL were composed of at least two populations, one possessing tumor-specific and the other nonspecific antitumor activity. When 2×107 of MOPC-CL were administered IP to mice that had been inoculated IP with 105 MOPC 104E cells 5 days previously marginal prolongation of survival was observed. This effect was not augmented by the single injection of a larger number (5×107) of CL, but was augmented by the repeated daily administration for 4 days (from day 5 to day 8 after the inoculation) of the same total number (5×107) of CL. In addition, IP injection of the streptococcal preparation OK432 before the transfer of CL significantly enhanced the therapeutic efficacy, and resulted in a cure rate of 20%. The mechanism of this combined effect appears to involve the effect of OK432 on interleukin 2 (IL-2) regulation systems in vivo. Our culture system with TCGF and USE and our therapy system with OK432 and CL allow the clinical application of adoptive immunotherapy for the many types of solid cancers.  相似文献   

12.
Interferon-γ-inducing factor/interleukin-18 is a novel cytokine that reportedly augments natural killer (NK) activity in human and mouse peripheral blood mononuclear cell cultures in vitro and has recently been designated IL-18. In this study, IL-18 exhibited significant antitumor effects in BALB/c mice challenged intraperitoneally (i.p.) with syngeneic Meth A sarcoma when administered i.p. on days 1, 2 and 3 after challenge. Intravenous (i.v.) administration also induced antitumor effects in the tumor-bearing mice; however, subcutaneous (s.c.) administration did not. When mice were twice pretreated with 1 μg IL-18 3 days and 6 h before tumor challenge, all mice survived whereas control mice died within 3 weeks of challenge. Inhibitory effects on Meth A cell growth in vitro were not observed with either IL-18 or interferon γ. The effects of IL-18 pretreatment were abrogated by abolition of NK activity after mice had been injected with anti-asialo GM1 antibody 48 h before and, 24 h and 72 h after tumor challenge. Mice pretreated with IL-18 and surviving tumor challenge resisted rechallenge with Meth A cells but could not reject Ehrlich ascites carcinoma, and spleen cells from the resistant mice, but not control mice, exhibited cytotoxic activity against Meth A cells in vitro after restimulation with mitomycin C-treated Meth A cells for 5 days. The effector cells in the spleen cell preparations from resistant mice appear to be CD4+ cells because cytolytic activity was significantly inhibited after depletion of this subset by monoclonal antibodies and complement. In conclusion, IL-18 exhibits in vivo immunologically (primarily NK) mediated antitumor effects in mice challenged with syngeneic Meth A sarcoma and induces immunological memory and the generation of cytotoxic CD4+ cells. Received: 17 September 1996 / Accepted: 8 November 1996  相似文献   

13.
In vivo patterns of lymphocytes sensitized against autologous tumor (in vitro) were studied in seven patients with metastatic cancer as a potential candidate for an alternative method of radioimmunodetection and adoptive immunocytotherapy. Peripheral blood lymphocytes (PBL) were either activated in Interleukin-2 (IL-2) [lymphokine activated killer (LAK) cells]or sensitized against autologous tumor cells by in vitro co-culture (IVC) and expanded in IL-2 (educated cells); both were then labelled with 111In. Labelled autologous cells (1 × 107−5 × 108) were administered to patients and biodistribution studied by imaging under a gamma camera at various time intervals. In 4/7 cases, imaging with the educated cells showed concentrations of radioactivity at sites that correlated positively with clinically detectable metastatic tumor. By contrast, only one instance of positive uptake was seen with the LAK cells. Other than slight fever in three cases, infusions of labelled PBL were well tolerated. Educated lymphocytes were cytotoxic against autologous tumor cells and the cytotoxic reactivities of the educated cells were maintained in continuous culture in IL-2 for 4–6 weeks. Evidence of accumulation of radiolabelled educated autologous cells at a significantly higher frequency than that of the LAK cells suggests that in vitro expanded educated PBL might be better candidates for radioimmunodetection of human cancer, and continuous cultures of such educated autologous PBL might be sources for repeated administration of these effector cells.  相似文献   

14.
During the incubation of murine spleen, lymph node, or bone marrow cells with IL-2 (1000 U/ml) a small percentage of cells became adherent to the surface of plastic tissue culture flasks. After removal of the non-adherent lymphoid cells, plastic adherent lymphokine-activated killer (LAK) cells could be efficiently expanded in the presence of IL-2. Plastic adherent-derived A-LAK cells were characterized by high rates of proliferation and their cytotoxic activity was more than 10 fold higher than LAK cells generated in the bulk (unfractionated) spleen cell cultures. A-LAK cells could be continuously generated from the non-adherent cell population. Using multiple transfers (every 1 to 2 days) of non-adherent LAK cells into new flasks, new rounds of plastic adherent cells were generated with high expansion capability and high levels of cytotoxic activity. Morphologically, A-LAK cells were large granular lymphocyte and phenotypically expressed markers characteristic of NK cells (asialo GM1+, NK1.1+, Qa5+, Ly-6.2+, Thy-1.2+, but negative for Lyt-2.2 and L3T4). A-LAK cells generated from mice of different strains expressing low and high levels of NK cell activity were equally highly cytotoxic. However, A-LAK cells obtained from nude or beige mice had relatively lower levels of cytotoxicity. Stimulation of NK cell activity by poly I:C or inhibition by in vivo or in vitro treatment with anti-asialo GM1 serum did not affect the generation of A-LAK cells. A-LAK cells derived from spleen or bone marrow of C57BL/6 or nude mice treated with anti-asialo GM1 serum were found to be asialo GM1+ suggesting that A-LAK cell could be generated from the asialo GM1- precursor cells. Expansion of plastic adherent A-LAK cells in the presence of IL-2 could provide large numbers of highly purified cytotoxic A-LAK cells suitable for cancer immunotherapy.  相似文献   

15.
Summary Patients with chronic myelogenous leukaemia (CML) in untreated chronic phase are deficient in their ability to generate lymphokine-activated killer (LAK) cells from peripheral blood mononuclear cells although they posses essentially normal levels of CD16+ and Leu19+ lymphocytes, which do not seem to be actively suppressed by tumour cells. Attempts to enhance LAK cell generation in these patients are reported here. Combining the lymphokines interleukins-2, with -4 and -5 (IL-2, IL-4, IL-5), was not successful; in fact, IL-4 depressed LAK cell induction in both normal donors and CML patients. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate also failed to enhance cytotoxicity of normal donors or patients, and indomethacin was similarly without effect. The only agent found to enhance LAK cell induction by IL-2 in normal donors was interferon- (but not IFN-) and even this modest effect was not seen with the cells of CML patients. Increasing concentrations of IL-2 and/or culture duration also failed to improve LAK cell generation by patients. The only improvement in LAK cell generation was observed in CML patients treated for one or more months with IFN-, where a steady increase of LAK activity with time after initiation of therapy was noted. These results show that the blockade of LAK cell induction in chronic-phase myelogenous leukaemia patients is difficult to lift pharmacologically in vitro but possibly susceptible to biological response modifiers in vivo.  相似文献   

16.
Summary The capacity of the interferon inducer ABPP and recombinant interleukin-2 (IL-2) to generate lymphokine activated killer (LAK) cell activity in vivo was examined and compared to the cytolysis of fresh tumor cells by in vitro generated LAK cells. Various tumors differing in histology and immunogenicity were used in in vitro and in vivo experiments. The i.p. administration of ABPP or IL-2 generated much higher levels of LAK cell activity in the peritoneal exudate than in the spleen. Administration of 2 injections of ABPP was as effective as a 3-day course of moderate doses of IL-2. Generation of LAK cell activity by IL-2 was dose dependent. ABPP had significant antitumor activity in vivo in both the i.p. tumor model and the pulmonary metastasis model when administered early (24–48 h after tumor inoculation), but was ineffective against established (day 3) tumor or advanced grossly visible i.p. (day 8) tumor. Treatment of established tumor with IL-2 and LAK cells was not more effective when ABPP was given concurrently. In contrast when ABPP preceded IL-2 and LAK treatment an additional antitumor effect was seen. Immunogenic tumors were more sensitive to treatment with ABPP than nonimmunogenic tumors. Only a marginal difference in lysability in vitro existed. The antitumor effects of ABPP in vivo may therefore be mediated by mechanisms other than cytolysis by activated killer cells alone. These data taken together suggest that ABPP and IL-2 induce discernable levels of LAK cell activity, but do not synergize when combined  相似文献   

17.
We have constructed a recombinant vaccinia virus (VV) expressing the human interleukin-6 (IL-6) gene, VV(IL-6). After injection of VV(IL-6) i.v. into Balb/c mice, circulating IL-6 was detected during 3 days with the peak activity on day 4, indicating that VV injection is an effective method to deliver lymphokines in vivo. We have further examined the effects of IL-6 in vivo in immunodeficient mice. Nude mice were injected i.v. with VV(IL-6). Ten days after the injection, mice were sacrificed and spleen cells were obtained. Spleen cells from VV(IL-6) injected mice proliferated remarkably in response to IL-2, while spleen cells from mice injected with unrelated VV manifested no particular proliferation in response to lymphokines. When spleen cells were further cultured in vitro for 5 days in the presence of Concanavalin-A stimulated rat spleen cell supernatant (Con-A factor), CD4 or CD8 positive cells were detected in the VV (IL-6) injected group, while few positive cells were detected in the control groups. These results suggest that IL-6 stimulates nude mice spleen cells in vivo, to a stage where they are able to proliferate in response to IL-2, or to differentiate into CD4 or CD8 positive cells in presence of rat Con-A factor.  相似文献   

18.
Summary Large numbers of cytotoxic T lymphocytes (CTL) could be generated from tumor-draining lymph nodes (DLN) from mice bearing PHS-5 tumor by culturing at low density with autologous tumor cell stimulators and 20 U/ml recombinant interleukin-2 (IL-2). Outgrowth of metastatic tumor cells in culture was prevented by use of this hypoxanthine/aminopterin/thymidine-sensitive mutant of P815, PHS-5. After 9 days in culture, lymphoid cells demonstrated specific cytotoxicity against autologous tumor target cells. Lymph node cells could be expanded continuously in culture with repeated tumor stimulation with up to 7500-fold increase in cell number by 6 weeks; although CTL could be activated from tumor-bearing host spleen cells in short-term culture, they showed no significant growth in long-term cultures. Phenotypically, DLN cells were a mixture of CD8+ and CD4+ cells immediately after harvest but after 2 weeks in culture they were predominantly CD8+ CD4. CTL could be generated from tumor-bearing mice 10–14 days after i.d. tumor inoculation into the abdominal wall, but the immune response declined both in spleen and DLN by 21 days. Much greater CTL activity could be generated from axillary DLN that contained metastases than from non-draining popliteal nodes that were free of metastatic tumor cells. Some CTL activity could be generated from DLN with the addition of IL-2 alone but was further increased by the addition of more tumor cells as stimulators. When adoptively transferred to a host with 3-day P815 liver metastases, lymphocytes from DLN activated in vitro were able to reduce or eliminate metastases with very little or no IL-2 administered concomitantly. As few as 106 cells were therapeutically effective, and in vivo efficacy was tumor-specific, since L5178Y liver metastases were not affected.This work was supported in part by grants CA42443, CA48075 and T32-CA09210 from the National Cancer Institute, Department of Health and Human ServicesRecipient of the Canadian Cancer Society McEachern Fellowship.  相似文献   

19.
The in vivo distribution of intravenously injected lymphokine activated killer (LAK) cells, generated in vitro with rIL-2 from normal murine splenocytes, was studied in BALB/c mice and compared with that of normal splenocytes. Both normal splenocytes and LAK cells were labeled with 51Cr, and the results were analyzed at 6, 24, and 48 hours after injection by localization index as the parameter. After injection through tail veins of mice, LAK cells were found to migrate to the spleen, lungs, liver, lymph nodes, bones and the kidneys. The apparent increased distribution pattern of LAK cells to the lung at 6 and 24 hours after injection was not detected when normal splenocytes were injected. Since almost one third of the injected LAK cells were found to localize in the spleen, it was postulated that splenectomy would affect the in vivo organ distribution of LAK cells. Accordingly, the in vivo distribution of LAK cells in splenectomized mice was further investigated. Results indicated that splenectomy enhanced the convergence of LAK cells to the lungs, liver, lymph nodes and bones. Therefore, splenectomy may augment the therapeutic effect of the adoptive transfer of LAK cells in pulmonary, hepatic, lymph node and bony metastases.  相似文献   

20.
Lymphokine-activated killer (LAK) cells are currently being evaluated in several cancer centers for the immunotherapy of patients with a variety of cancers. Understanding the in vivo distribution of LAK cells should help to optimize their antitumor efficacy. As a model system to examine this issue, nylon wool column-passed rat lymphocytes were cultured in the presence of rIL-2 for 1 and 2 days. The resulting cells were divided into two populations; one that adhered to the plastic flasks and the second which did not adhere. The adherent cells were found to be highly cytotoxic against NK-sensitive and NK-resistant targets, whereas the nonadherent cells were unable to kill NK-resistant targets unless T cells were removed from this population. These results indicate that T cells present in IL-2 activated bulk splenocytes may interfere with the activity of LAK cells. Adherent or nonadherent LAK cells were evaluated for their pattern of in vivo distribution after i.v. inoculation. These cells were found to display a restricted pattern of distribution, localizing mainly in the lungs at 2 h after i.v. injection but redistributing into the liver and the spleen by 24 h. LAK cells were rarely recovered from the lymphoid tissues, including the peripheral lymph nodes and the mesenteric lymph nodes. However, if T cells were not removed from the LAK cell population, some radioactivity was recovered from the peripheral and mesenteric lymph nodes. Fractionation of 2 day-activated, nonadherent population on discontinuous Percoll resulted in the enrichment of large granular lymphocyte (LGL)/LAK activity in low density fractions (42% and 45% Percoll), whereas high density fraction (70% Percoll) contained T cells which showed no cytolytic activity. Upon transfer into syngeneic rats, the 42% fraction showed typical LAK migration. In contrast, the 70% fraction showed typical T cell migration. What is more important, removal of the granulated cells resulted in a population which have no granules and resemble large agranular lymphocytes known to be pre-LGL/LAK cells. Large agranular lymphocytes showed a pattern of distribution different from both T and LGL/LAK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号