首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
A family of transposable genetic elements in the genome of the frog, Xenopus laevis, is described. They are designated Tx1. Transposability of the elements was deduced by characterization of a chromosomal locus which is polymorphic for the presence or absence of a Tx1 element. Nucleotide sequence analysis suggested that Tx1 elements show target site specificity, as they are inserted at the pentanucleotide TTTAA in all four cases that were examined. The elements appear to have 19-base-pair (bp) inverted terminal repeats, and they are flanked by 4-bp target duplications (TTAA), although the possibility that they do not create target site duplications is discussed. Tx1 elements have several unusual characteristics: the central portion of each element is comprised of a variable number of two types of 393-bp repeating units; the rightmost 1,000 bp of the element contains separate regions potentially capable of forming bends, left-handed Z-form DNA, and alternative stem-loop structures. Comparisons among single frogs suggest that germ line transposition is relatively infrequent and that variations in numbers of internal repeats accumulate quite slowly at any locus.  相似文献   

3.
The Tx1L elements constitute a family of site-specific non-LTR retrotransposons found in the genome of the frog Xenopus laevis . The elements have two open reading frames (ORFs) with homology to proteins of retroviruses and other retroelements. This study demonstrates an expected activity of one of the element-encoded proteins. The RNA binding properties of ORF1p, the product of the first ORF of Tx1L, were examined after expression from RNA injected into Xenopus oocytes. Using sucrose gradient sedimentation and non-denaturing gel electrophoresis, we show that ORF1p associates with RNA in cytoplasmic ribonucleoprotein (RNP) particles. Discrete RNPs are formed with well-defined mobilities. The ORF1p RNPs are distinct from endogenous RNPs that contain stored oocyte mRNAs and two specific endogenous mRNAs do not become associated with ORF1p. ORF1p appears to be capable of associating with its own mRNA and with other injected RNAs, independent of specific recognition sequences. Although nuclear localization of ORF1p was anticipated, based both on the supposed mechanism of transposition and on the presence of a potential nuclear localization signal, no significant fraction of the protein was found in the oocyte nucleus. Nonetheless, the RNA binding capability of ORF1p is consistent with the proposed model for transposition of non-LTR retrotransposons.  相似文献   

4.
5.
L1 is the most proliferative autonomous retroelement that comprises about 20% of mammalian genomes. Why L1s have proliferated so extensively in mammalian genomes is an important yet unsolved question. L1 copies are amplified via retrotransposition, in which the DNA cleavage specificity by the L1-encoded endonuclease (EN) primarily dictates sites of insertion. Whereas mammalian L1s show target preference for 5'-TTAAAA-3', other L1-like elements exhibit various degrees of target specificity. To gain insights on diversification of the EN specificity during L1 evolution, ENs of zebrafish L1 elements were analyzed here. We revealed that they form 3 discrete clades, M, F, and Tx1, which is in stark contrast to a single L1 clade in mammalian species. Interestingly, zebrafish clade M elements cluster as a sister group of mammalian L1s and show target-site preference for 5'-TTAAAA-3'. In contrast, elements of the clade F, the immediate outgroup of the clade M, show little specificity. We identified certain clade-specific amino acid residues in EN, many of which are located in the cleft that recognizes the substrate, suggesting that these amino acid alterations have generated 2 types of ENs with different substrate specificities. The distribution pattern of the 3 clades suggests a possibility that the acquisition of target specificity by the L1 ENs improved the L1 fitness under the circumstances in mammalian hosts.  相似文献   

6.
Composite transposable elements in the Xenopus laevis genome.   总被引:7,自引:1,他引:6       下载免费PDF全文
Members of two related families of transposable elements, Tx1 and Tx2, were isolated from the genome of Xenopus laevis and characterized. In both families, two versions of the elements were found. The smaller version in each family (Tx1d and Tx2d) consisted largely of two types of 400-base-pair tandem internal repeats. These elements had discrete ends and short inverted terminal repeats characteristic of mobile DNAs that are presumed to move via DNA intermediates, e.g., Drosophila P and maize Ac elements. The longer versions (Tx1c and Tx2c) differed from Tx1d and Tx2d by the presence of a 6.9-kilobase-pair internal segment that included two long open reading frames (ORFs). ORF1 had one cysteine-plus-histidine-rich sequence of the type found in retroviral gag proteins. ORF2 showed more substantial homology to retroviral pol genes and particularly to the analogs of pol found in a subclass of mobile DNAs that are supposed retrotransposons, such as mammalian long interspersed repetitive sequences, Drosophila I factors, silkworm R1 elements, and trypanosome Ingi elements. Thus, the Tx1 elements present a paradox by exhibiting features of two classes of mobile DNAs that are thought to have very different modes of transposition. Two possible resolutions are considered: (i) the composite versions are actually made up of two independent elements, one of the retrotransposon class, which has a high degree of specificity for insertion into a target within the other, P-like element; and (ii) the composite elements are intact, autonomous mobile DNAs, in which the pol-like gene product collaborates with the terminal inverted repeats to cause transposition of the entire unit.  相似文献   

7.
Summary Globin mRNAs ofXenopus borealis andXenopus tropicalis have been cloned and sequenced. The nucleotide and derived amino acid sequences were compared with each other and with already available data fromXenopus laevis. This analysis rendered clear evidence that the common ancestor ofX. laevis andX. borealis, but not ofX. tropicalis, had lost one amino acid of the -globins prior to a genome duplication event that preceded the segregation of the former two species. Replacement-site substitutions were used to calculate a rough time scale of genome duplication and species segregation. The results suggest an ancient separation between theX. laevis and theX. tropicalis groups occurring approximately 110–120 million years ago. Analysis of the amino acid chains demonstrated various alterations. However, some functional domains, like heme-binding sites and12 contact sites, were subject to a high degree of conservation, indicating the existence of functional constraints on them also in the genusXenopus.  相似文献   

8.
9.
10.
11.
12.
The trypanosomatid protozoan Trypanosoma cruzi contains long autonomous (L1Tc) and short nonautonomous (NARTc) non-long terminal repeat retrotransposons. NARTc (0.25 kb) probably derived from L1Tc (4.9 kb) by 3'-deletion. It has been proposed that their apparent random distribution in the genome is related to the L1Tc-encoded apurinic/apyrimidinic endonuclease (APE) activity, which repairs modified residues. To address this question we used the T. cruzi (CL-Brener strain) genome data to analyze the distribution of all the L1Tc/NARTc elements present in contigs larger than 10 kb. This data set, which represents 0.91x sequence coverage of the haploid nuclear genome ( approximately 55 Mb), contains 419 elements, including 112 full-length L1Tc elements (14 of which are potentially functional) and 84 full-length NARTc. Approximately half of the full-length elements are flanked by a target site duplication, most of them (87%) are 12 bp long. Statistical analyses of sequences flanking the full-length elements show the same highly conserved pattern upstream of both the L1Tc and NARTc retrotransposons. The two most conserved residues are a guanine and an adenine, which flank the site where first-strand cleavage is performed by the element-encoded endonuclease activity. This analysis clearly indicates that the L1Tc and NARTc elements display relative site specificity for insertion, which suggests that the APE activity is not responsible for first-strand cleavage of the target site.  相似文献   

13.
We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the α-tropomyosin (α-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated α-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284 bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the laevis genome. Every MITEs elements but two described in our study are found either in 5′ or in 3′ regulatory regions of genes suggesting a potential role in gene regulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Characterization of pre-insertion loci of de novo L1 insertions   总被引:1,自引:0,他引:1  
The human Long Interspersed Element-1 (LINE-1) and the Short Interspersed Element (SINE) Alu comprise 28% of the human genome. They share the same L1-encoded endonuclease for insertion, which recognizes an A+T-rich sequence. Under a simple model of insertion distribution, this nucleotide preference would lead to the prediction that the populations of both elements would be biased towards A+T-rich regions. Genomic L1 elements do show an A+T-rich bias. In contrast, Alu is biased towards G+C-rich regions when compared to the genome average. Several analyses have demonstrated that relatively recent insertions of both elements show less G+C content bias relative to older elements. We have analyzed the repetitive element and G+C composition of more than 100 pre-insertion loci derived from de novo L1 insertions in cultured human cancer cells, which should represent an evolutionarily unbiased set of insertions. An A+T-rich bias is observed in the 50 bp flanking the endonuclease target site, consistent with the known target site for the L1 endonuclease. The L1, Alu, and G+C content of 20 kb of the de novo pre-insertion loci shows a different set of biases than that observed for fixed L1s in the human genome. In contrast to the insertion sites of genomic L1s, the de novo L1 pre-insertion loci are relatively L1-poor, Alu-rich and G+C neutral. Finally, a statistically significant cluster of de novo L1 insertions was localized in the vicinity of the c-myc gene. These results suggest that the initial insertion preference of L1, while A+T-rich in the initial vicinity of the break site, can be influenced by the broader content of the flanking genomic region and have implications for understanding the dynamics of L1 and Alu distributions in the human genome.  相似文献   

16.
The genome of the human pathogen Entamoeba histolytica contains non-long terminal repeat (LTR) retrotransposons, the EhLINEs and EhSINEs, which lack targeted insertion. We investigated the importance of local DNA structure, and sequence preference of the element-encoded endonuclease (EN) in selecting target sites for retrotransposon insertion. Pre-insertion loci were tested computationally to detect unique features based on DNA structure, thermodynamic considerations and protein interaction measures. Target sites could readily be distinguished from other genomic sites based on these criteria. The contribution of the EhLINE1-encoded EN in target site selection was investigated biochemically. The sequence-specificity of the EN was tested in vitro with a variety of mutated substrates. It was possible to assign a consensus sequence, 5′-GCATT-3′, which was efficiently nicked between A-T and T-T. The upstream G residue enhanced EN activity, possibly serving to limit retrotransposition in the A+T-rich E.histolytica genome. Mutated substrates with poor EN activity showed structural differences compared with normal substrates. Analysis of retrotransposon insertion sites from a variety of organisms showed that, in general, regions of favorable DNA structure were recognized for retrotransposition. A combination of favorable DNA structure and preferred EN nicking sequence in the vicinity of this structure may determine the genomic hotspots for retrotransposition.  相似文献   

17.
18.
19.
20.
Eukaryotic genome expansion/retraction caused by LTR-retrotransposon activity is dependent on the expression of full length copies to trigger efficient transposition and recombination-driven events. The Tnt1 family of retrotransposons has served as a model to evaluate the diversity among closely related elements within Solanaceae species and found that members of the family vary mainly in their U3 region of the long terminal repeats (LTRs). Recovery of a full length genomic copy of Retrosol was performed through a PCR-based approach from wild potato, Solanum oplocense. Further characterization focusing on both LTR sequences of the amplified copy allowed estimating an approximate insertion time at 2 million years ago thus supporting the occurrence of transposition cycles after genus divergence. Copy number of Tnt1-like elements in Solanum species were determined through genomic quantitative PCR whereby results sustain that Retrosol in Solanum species is a low copy number retrotransposon (1–4 copies) while Retrolyc1 has an intermediate copy number (38 copies) in S. peruvianum. Comparative analysis of retrotransposon content revealed no correlation between genome size or ploidy level and Retrosol copy number. The tetraploid cultivated potato with a cellular genome size of 1,715 Mbp harbours similar copy number per monoploid genome than other diploid Solanum species (613–884 Mbp). Conversely, S. peruvianum genome (1,125 Mbp) has a higher copy number. These results point towards a lineage specific dynamic flux regarding the history of amplification/activity of Tnt1-like elements in the genome of Solanum species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号