首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery of human cytomegalovirus (HCMV)-specific T immunity is critical for protection against HCMV disease in the early phase after allogeneic stem cell transplantation (SCT). Using an enzyme-linked immunospot assay with overlapping 15-mer peptides spanning pp65 and immediate-early 1 HCMV proteins, we investigated which HCMV-specific CD8+ gamma interferon-positive (IFN-γ+) T-cell responses against pp65 and IE-1 were associated with control of HCMV replication in 48 recipients of unmanipulated HLA-matched allografts at 3 months (M3) and 6 months (M6) after SCT and in 23 donors. At M3 after SCT, the magnitude of the pp65-specific IFN-γ-producing CD8+ T-cell response was greater in recipients than in donors, regardless of HCMV status. In contrast, expansion of IE-1-specific CD8+ T cells at M3 was associated with protection against HCMV, and no patient with this expansion had HCMV replication at M3. At M6, the number of HCMV-specific CD8+ T cells against both pp65 and IE-1 had expanded in all recipients, regardless of their previous levels of HCMV replication. The recipients' HCMV-specific CD8+ T cells already detectable in related donors were predominantly targeting pp65. In contrast, in 40% of the cases, the HCMV-specific CD8+ T cells in recipients involved new CD8+ T-cell specificities undetectable in their related donors and preferentially targeting IE-1. Taken together, these results showed that the delay in reconstituting IE-1-specific CD8+ T cells is correlated with the lack of protection against HCMV in the first 3 months after SCT. They also show that IE-1 is a major antigenic determinant of the early restoration of protective immunity to HCMV after SCT.  相似文献   

2.
Human cytomegalovirus (HCMV) can establish both nonproductive (latent) and productive (lytic) infections. Many of the proteins expressed during these phases of infection could be expected to be targets of the immune response; however, much of our understanding of the CD8(+)-T-cell response to HCMV is mainly based on the pp65 antigen. Very little is known about T-cell control over other antigens expressed during the different stages of virus infection; this imbalance in our understanding undermines the importance of these antigens in several aspects of HCMV disease pathogenesis. In the present study, an efficient and rapid strategy based on predictive bioinformatics and ex vivo functional T-cell assays was adopted to profile CD8(+)-T-cell responses to a large panel of HCMV antigens expressed during different phases of replication. These studies revealed that CD8(+)-T-cell responses to HCMV often contained multiple antigen-specific reactivities, which were not just constrained to the previously identified pp65 or IE-1 antigens. Unexpectedly, a number of viral proteins including structural, early/late antigens and HCMV-encoded immunomodulators (pp28, pp50, gH, gB, US2, US3, US6, and UL18) were also identified as potential targets for HCMV-specific CD8(+)-T-cell immunity. Based on this extensive analysis, numerous novel HCMV peptide epitopes and their HLA-restricting determinants recognized by these T cells have been defined. These observations contrast with previous findings that viral interference with the antigen-processing pathway during lytic infection would render immediate-early and early/late proteins less immunogenic. This work strongly suggests that successful HCMV-specific immune control in healthy virus carriers is dependent on a strong T-cell response towards a broad repertoire of antigens.  相似文献   

3.
The transfer of anti-human cytomegalovirus (HCMV) effector T cells to allogeneic bone marrow recipients results in protection from HCMV disease associated with transplantation, suggesting the direct control of CMV replication by T cells. IE1 and pp65 proteins, both targets of CD4(+) and CD8(+) T cells, are considered the best candidates for immunotherapy and vaccine design against HCMV. In this report, we describe the purification of a 165-kDa chimeric protein, IE1-pp65, and its use for in vitro stimulation and expansion of anti-HCMV CD4(+) and CD8(+) T cells from peripheral blood mononuclear cells (PBMC) of HCMV-seropositive donors. We demonstrate that an important proportion of anti-HCMV CD4(+) T cells was directed against IE1-pp65 in HCMV-seropositive donors and that the protein induced activation of HLA-DR3-restricted anti-IE1 CD4(+) T-cell clones, as assessed by gamma interferon (IFN-gamma) secretion and cytotoxicity. Moreover, soluble IE1-pp65 stimulated and expanded anti-pp65 CD8(+) T cells from PBMC of HLA-A2, HLA-B35, and HLA-B7 HCMV-seropositive blood donors, as demonstrated by cytotoxicity, intracellular IFN-gamma labeling, and quantitation of peptide-specific CD8(+) cells using an HLA-A2-peptide tetramer and staining of intracellular IFN-gamma. These results suggest that soluble IE1-pp65 may provide an alternative to infectious viruses used in current adoptive strategies of immunotherapy.  相似文献   

4.
Cytotoxic T lymphocytes play a central role in the control of persistent human CMV (HCMV) infection and reactivation. In healthy virus carriers, the specific CD8(+) CTL response is almost entirely directed against the virion tegument protein pp65 and/or the 72-kDa major immediate early protein, IE1. Studies that included a large panel of HCMV(+) donors suggested that immunorelevance of pp65 and IE1 was directly related with individual HLA haplotype difference. Nevertheless, there are no data on the incidence of HCMV natural polymorphism on virus-specific CTL responses. To assess the impact of IE1 polymorphism on CTL response, we have sequenced in 103 clinical isolates the DNA region corresponding to IE1(315-324), an immunodominant epitope presented by HLA-A*0201 molecules. Seven peptidic variants were found with extensive difference in their frequencies. The response of four HLA-A*0201-restricted anti-IE1 T lymphocyte clones, which were previously generated from one donor against autologous B lymphoblastoid cells expressing a recombinant clinical variant of IE1, was then evaluated using target cells loaded with mutant synthetic peptides or expressing rIE1 variants. One of four clones, which have been sorted 19 times among 22 clones targeted against IE1(315-324), recognized six of the seven tested variant epitopes. All three other clones showed distinct reactivity patterns to target cells loaded with the different mutant peptides or expressing IE1 variants. Therefore, in the HLA-A2 context, clonal expansions of anti-IE1 memory CTLs may confer a protection against HCMV successive infections and reactivations by killing cells presenting most of the naturally occurring IE1(315-324) epitope variants.  相似文献   

5.
Recombinant modified vaccinia Ankara- and peptide-based IFN-gamma ELISPOT assays were used to detect and measure human CMV (HCMV)-specific CD8(+) T cell responses to the pp65 (UL83) and immediate early protein 1 (IE1; UL123) gene products in 16 HCMV-infected infants and children. Age at study ranged from birth to 2 years. HCMV-specific CD8(+) T cells were detected in 14 (88%) of 16 children at frequencies ranging from 60 to >2000 spots/million PBMC. Responses were detected as early as 1 day of age in infants with documented congenital infection. Nine children responded to both pp65 and IE1, whereas responses to pp65 or IE1 alone were detected in three and two children, respectively. Regardless of the specificity of initial responses, IE1-specific responses predominated by 1 year of age. Changes in HCMV epitopes targeted by the CD8(+) T cell responses were observed over time; epitopes commonly recognized by HLA-A2(+) adults with latent HCMV infection did not fully account for responses detected in early childhood. Finally, the detection of HCMV-specific CD8(+) T cell responses was temporally associated with a decrease in peripheral blood HCMV load. Taken altogether, these data demonstrate that the fetus and young infant can generate virus-specific CD8(+) T cell responses. Changes observed in the protein and epitope-specificity of HCMV-specific CD8(+) T cells over time are consistent with those observed after other primary viral infections. The temporal association between the detection of HCMV-specific CD8(+) T cell responses and the reduction in blood HCMV load supports the importance of CD8(+) T cells in controlling primary HCMV viremia.  相似文献   

6.
Human cytomegalovirus (HCMV) infection is well controlled mainly by cytotoxic CD8(+) T lymphocytes (CTL) directed against the matrix protein pp65 despite the numerous immune escape mechanisms developed by the virus. Dendritic cells (DCs) are key antigen-presenting cells for the generation of an immune response which have the capacity to acquire antigens via endocytosis of apoptotic cells and thus present peptides to major histocompatibility complex class I-restricted T cells. We examined whether this mechanism could contribute to the activation of anti-pp65 CTL. In this study, we show that infection by HCMV AD169 induced sensitization of MRC5 fibroblasts to tumor necrosis factor alpha-mediated apoptosis very early after virus inoculation and that pp65 contained in apoptotic cells came from the delivery of the matrix protein into the cell. We observed that immature DCs derived from peripheral monocytes were not permissive to HCMV AD169 infection but were able to internalize pp65-positive apoptotic infected MRC5 cells. We then demonstrated that following exposure to these apoptotic bodies, DCs could activate HLA-A2- or HLA-B35-restricted anti-pp65 CTL, suggesting that they acquired and processed properly fibroblast-derived pp65. Together, our data suggest that cross-presentation of incoming pp65 contained in apoptotic cells may provide a quick and efficient way to prime anti-HCMV CD8(+) T cells.  相似文献   

7.
Replication of human cytomegalovirus is controlled by a vigorous CD8 T cell response. The persistent nature of infection is believed to periodically stimulate T cell responses resulting in considerable expansions of virus-specific CD8 T cells over time. In this study, we describe the magnitude and breadth of CD8 T cell responses against the immunodominant viral Ags, IE-1 and pp65, in acute and long-term infection using the IFN-gamma ELISPOT assay. Simultaneously, we have identified several novel MHC class I restricted CD8 T cell epitopes. Acute phase responses in immunocompetent donors appear to be extremely focused as early as 1 week post diagnosis with dominant peptide-specific responses observed against both proteins. These dominant responses remain detectable at all later time points over a 4-year follow-up. Interestingly the IE-1 responses show an increase over time whereas the pp65 responses do not, which contrasts with data showing that responses against both Ags are elevated in elderly individuals. We also observe the rapid emergence of an effector memory phenotype for virus-specific CD8 T cells as observed in persistent infection. Over time the revertant CD45RA(pos) effector cell population is also expanded, and this is more evident in the preferentially expanded IE-1 responses. We postulate that periodic low-level virus reactivation after the acute infection phase preferentially stimulates these responses whereas pp65-specific T cell expansions probably occur during the infrequent episodes of lytic viral replication or secondary infection.  相似文献   

8.
Cytotoxic T lymphocytes (CTL) appear to play an important role in the control of human cytomegalovirus (HCMV) in the normal virus carrier: previous studies have identified peripheral blood CD8+ CTL specific for the HCMV major immediate-early gene product (IE1) and more recently, by bulk culture and cloning techniques, have identified CTL specific for a structural gene product, the lower matrix protein pp65. In order to determine the relative contributions of CTL which recognize the HCMV proteins IE1, pp65, and glycoprotein B (gB) to the total HCMV-specific CTL response, we have used a limiting-dilution analysis system to quantify HCMV-specific CTL precursors with different specificities, allowing the antigenic specificity of multiple short-term CTL clones to be assessed, in a group of six healthy seropositive donors. All donors showed high frequencies of HCMV-specific major histocompatibility complex-restricted CTL precursors. There was a very high frequency of CTL specific for pp65 (lower matrix protein); IE1-specific CTL were also detectable at lower frequencies in three of five donors, while CTL directed to gB were undetectable. A pp65 gene deletion mutant of HCMV was then used to estimate the contribution of pp65-specific CTL to the total HCMV-specific CTL response; this showed that between 70 and 90% of all CTL recognizing HCMV-infected cells were pp65 specific. Analysis of the peptide specificity of pp65-specific CTL showed that some donors have a highly focused response recognizing a single peptide; the T-cell receptor Vbeta gene usage in these two donors was shown to be remarkably restricted, with over half of the responding CD8+ T cells utilizing a single Vbeta gene rearrangement. Other subjects recognized multiple pp65 peptides: nine new pp65 CTL peptide epitopes were defined, and for five of these the HLA-presenting allele has been identified. All four of the HLA A2 donors tested in this study recognized the same peptide. This apparent domination of the CTL response to HCMV during persistent infection by a single structural protein, irrespective of major histocompatibility complex haplotype, is not clearly described for other persistent virus infections, and the mechanism requires further investigation.  相似文献   

9.
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.  相似文献   

10.
T cells play an important role in the control of human CMV (HCMV) infection. Peripheral blood CD4+ T cell proliferative responses to the HCMV lower tegument protein pp65 have been detected in most healthy HCMV carriers. To analyze the clonal composition of the CD4+ T cell response against HCMV pp65, we characterized three MHC class II-restricted peptide epitopes within pp65 in virus carriers. In limiting dilution analysis, we observed high frequencies of pp65 peptide-specific CD4+ T cells, many of which expressed peptide-specific cytotoxicity in addition to IFN-gamma secretion. We analyzed the clonal composition of CD4+ T cells specific for defined HCMV peptides by generating multiple independent peptide-specific CD4+ clones and sequencing the TCR beta-chain. In a given carrier, most of the CD4+ clones specific for a defined pp65 peptide had identical TCR nucleotide sequences. We used clonotype oligonucleotide probing to quantify the size of individual peptide-specific CD4+ clones in whole PBMC and in purified subpopulations of CD45RAhighCD45ROlow and CD45RAlowCD45ROhigh cells. Individual CD4+ T cell clones could be large (0.3-1.5% of all CD4+ T cells in PBMC) and were stable over time. Cells of a single clone were distributed in both the CD45RAhigh and CD45ROhigh subpopulations. In one carrier, the virus-specific clone was especially abundant in the small CD28-CD45RAhigh CD4+ T cell subpopulation. Our study demonstrates marked clonal expansion and phenotypic heterogeneity within daughter cells of a single virus-specific CD4+ T cell clone, which resembles that seen in the CD8+ T cell response against HCMV pp65.  相似文献   

11.
Oncoretroviral vectors encoding either full-length Ag or a corresponding immunodominant peptide were expressed in Langerhans-type dendritic cells (LCs) differentiated from CD34(+) progenitors. We used human CMV as a model Ag restricted by HLA-A*0201 to define parameters for eventual expression of cancer Ags by LCs for active immunization against tumors. Stimulation by CMVpp65(495-503)-pulsed LCs, CMVpp65(495-503)-transduced LCs, and full-length CMVpp65-transduced LCs respectively increased tetramer-reactive T cells with an effector memory phenotype by 10 +/- 11, 34 +/- 21, and 51 +/- 24-fold (p < 0.05) from CMV-seropositive donors. CMV-specific CD8(+) CTLs achieved respective frequencies of 231 +/- 102, 583 +/- 219, and 714 +/- 281 spot-forming cells per 10(5) input cells (p < 0.01) in ELISPOT assays for IFN-gamma secretion. LCs expressing full-length Ag stimulated greater lytic activity than either peptide-transduced or peptide-pulsed LCs (p < 0.05), all in the absence of exogenous cytokines. pp65-transduced LCs presenting class I and II MHC-restricted epitopes expanded IFN-gamma-secreting CD4(+) T cells, whereas pp65(495-503)-transduced LCs did not. CD4(+) T cell numbers even declined after stimulation by pp65(495-503) peptide-pulsed LCs. CD4(+) T cell depletion confirmed their contribution to the more robust CTL responses. LCs, transduced with a retroviral vector encoding full-length Ag, stimulate potent CTLs directed against multiple epitopes in a CD4(+) Th cell-dependent manner.  相似文献   

12.
Cytotoxic T lymphocytes (CTLs) play a central role in the control of persistent human cytomegalovirus (HCMV) infection in healthy virus carriers. Previous analyses of the specificity of HCMV-reactive CD8(+) CTLs drawn from in vitro models in which antigen-presenting cells were autologous fibroblasts infected with laboratory HCMV strains have shown focusing of CTL responses against the major tegument protein, pp65. By contrast, the 72-kDa major immediate-early protein (IE1) was identified as a minor target for this response. Here we have studied the fine specificity and T-cell-receptor features of T-cell clones generated against autologous B lymphoblastoid cell lines stably transfected with HCMV cDNA coding for either pp65 or a natural variant of IE1. This strategy allowed efficient generation of T-cell clones against IE1 and pp65 and led to the identification of several new IE1 and pp65 epitopes, including some located in polymorphic regions of IE1. Such an approach may provide relevant information about the characteristics of the CTL response to IE1 and the effect of viral polymorphism on the immune response against HCMV.  相似文献   

13.
The hepatitis C virus (HCV)-specific CD8(+)-T-cell response is thought to play a critical role in HCV infection. Studies of these responses have largely relied on the analysis of a small number of previously described or predicted HCV epitopes, mostly restricted by HLA A2. In order to determine the actual breadth and magnitude of CD8(+)-T-cell responses in the context of diverse HLA class I alleles, we performed a comprehensive analysis of responses to all expressed HCV proteins. By using a panel of 301 overlapping peptides, we analyzed peripheral blood mononuclear cells (PBMC) from a cohort of 14 anti-HCV-positive, HLA A2-positive individuals in an enzyme-linked immunospot assay. Only four subjects had detectable HLA A2-restricted responses in PBMC, and only 3 of 19 predicted A2 epitopes were targeted, all of which were confirmed by tetramer analysis. In contrast, 9 of 14 persons showed responses with more comprehensive analyses, with many responses directed against previously unreported epitopes. These results indicate that circulating HCV-specific CD8(+)-T-cell responses can be detected in PBMC in the majority of infected persons and that these responses are heterogeneous with no immunodominant epitopes consistently recognized. Since responses to epitopes restricted by single HLA alleles such as HLA A2 do not predict the overall response in an individual, more comprehensive approaches, as shown here, should facilitate definition of the role of the CD8(+)-T-cell response in HCV infection. Moreover, the low level or absence of responses to many predicted epitopes provides a rationale for immunotherapeutic interventions to broaden cytotoxic-T-lymphocyte recognition.  相似文献   

14.
Human CD4(+) T-helper 1 cell responses to Epstein-Barr virus (EBV) infection are likely to be important in the maintenance of virus-specific CD8(+) memory and/or as antiviral effectors in their own right. The present work has used overlapping peptides as stimulators of gamma interferon release (i) to identify CD4(+) epitopes within four EBV latent-cycle proteins, i.e., the nuclear antigens EBNA1 and EBNA3C and the latent membrane proteins LMP1 and LMP2, and (ii) to determine the frequency and magnitude of memory responses to these proteins in healthy virus carriers. Responses to EBNA1 and EBNA3C epitopes were detected in the majority of donors, and in the case of EBNA1, their antigen specificity was confirmed by in vitro reactivation and cloning of CD4(+) T cells using protein-loaded dendritic cell stimulators. By contrast, responses to LMP1 and LMP2 epitopes were seen much less frequently. EBV latent-cycle proteins therefore display a marked hierarchy of immunodominance for CD4(+) T-helper 1 cells (EBNA1, EBNA3C > LMP1, LMP2) which is different from that identified for the same proteins with respect to CD8(+)-T-cell responses (EBNA3C > EBNA1 > LMP2 > LMP1). Furthermore, the range of CD4(+) memory T-cell frequencies in peripheral blood of healthy virus carriers was noticeably lower and narrower than the corresponding range of latent antigen-specific CD8(+)-T-cell frequencies.  相似文献   

15.
Human CMV (HCMV) infection provides an informative model of how long term human CD8(+) T cell memory is maintained in the presence of Ag. To clarify the phenotypic identity of Ag-experienced human CD8(+) T cells in vivo, we determined the expression of costimulation and chemokine receptors on Ag-specific CD8(+) T cells by quantifying individual virus-specific clones in different cell populations using TCR clonotypic probing. In healthy HCMV carriers, expanded CD8(+) clones specific for either HCMV tegument protein pp65 or immediate-early protein IE72 are found in both CD45RO(high) cells and the subpopulation of CD45RA(high) cells that lack the costimulatory molecule CD28. In contrast to previous suggested models of CD8(+) T cell memory, we found that in healthy virus carriers highly purified CD28(-)CD45RA(high)CCR7(-) cells are not terminally differentiated, because following stimulation in vitro with specific HCMV peptide these cells underwent sustained clonal proliferation, up-regulated CD45RO and CCR5, and showed strong peptide-specific cytotoxic activity. In an individual with acute primary HCMV infection, HCMV pp65-specific CD8(+) T cells are predominantly CD28(-)CD45RO(high)CCR7(-). During convalescence, an increasing proportion of pp65-specific CD8(+) T cells were CD28(-)CD45RA(high)CCR7(-). We conclude that naive human CD8(+) T cells are CD28(+)CD45RA(high), express CCR7 but not CCR6, and are predominantly CD27(+) and L-selectin CD62 ligand-positive. The phenotype CD27(+)CD45RA(high) should not be used to identify naive human CD8(+) T cells, because CD27(+)CD45RA(high) cells also contain a significant subpopulation of CD28(-)CD27(+) Ag-experienced expanded clones. Thus CD8(+) T cell memory to HCMV is maintained by cells of expanded HCMV-specific clones that show heterogeneity of activation state and costimulation molecular expression within both CD45RO(high) and CD28(-)CD45RA(high) T cell pools.  相似文献   

16.
CD8(+) T cells are critical for the control of many persistent viral infections, such as human immunodeficiency virus, hepatitis C virus, Epstein-Barr virus, and cytomegalovirus (CMV). In most infections, large CD8(+)-T-cell populations are induced early but then contract and are maintained thereafter at lower levels. In contrast, CD8(+) T cells specific for murine CMV (MCMV) have been shown to gradually accumulate after resolution of primary infection. This unique behavior is restricted to certain epitopes, including an immunodominant epitope derived from the immediate-early 1 (IE1) gene product. To explore the mechanism behind this further, we measured CD8(+)-T-cell-mediated immunity induced by recombinant MCMV-expressing epitopes derived from influenza A virus or lymphocytic choriomeningitis virus placed under the control of an IE promoter. We observed that virus-specific CD8(+)-T-cell populations were induced and that these expanded gradually over time. Importantly, these CD8(+) T cells provided long-term protection against challenge without boosting. These results demonstrate a unique pattern of accumulating T cells, which provide long-lasting immune protection, that is independent of the initial immunodominance of the epitope and indicates the potential of T-cell-inducing vaccines based on persistent vectors.  相似文献   

17.
Ye M  Morello CS  Spector DH 《Journal of virology》2004,78(20):11233-11245
We previously demonstrated that after vaccination of BALB/c mice with DNA encoding murine cytomegalovirus (MCMV) IE1 or M84, a similar level of protection against MCMV infection was achieved. However, the percentage of antigen-specific CD8(+) T cells elicited by IE1 was higher than that by M84 as measured by intracellular cytokine staining when splenocytes were stimulated with an epitope peptide (M. Ye at al., J. Virol. 76:2100-2112, 2002). We show here that after DNA vaccination with M84, a higher percentage of M84-specific CD8(+) T cells was detected when splenocytes were stimulated with J774 cells expressing full-length M84. When the defined M84 epitope 297-305 was deleted, the mutant DNA vaccine was still protective against MCMV replication and induced strong M84-specific CD8(+)-T-cell responses. The M84 gene was subsequently subcloned into three fragments encoding overlapping protein fragments. When mice were immunized with each of the M84 subfragment DNAs, at least two additional protective CD8(+)-T-cell epitopes were detected. In contrast to strong responses after DNA vaccination, M84-specific CD8(+)-T-cell responses were poorly induced during MCMV infection. The weak M84-specific response after MCMV infection was not due to poor antigen presentation in antigen-presenting cells, since both J774 macrophages and primary peritoneal macrophages infected with MCMV in vitro were able to efficiently and constitutively present M84-specific epitopes starting at the early phase of infection. These results indicate that antigen presentation by macrophages is not sufficient for M84-specific CD8(+)-T-cell responses during MCMV infection.  相似文献   

18.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8(+) T cells provide an important defense in controlling HIV-1 replication, particularly following acquisition of infection. To delineate the breadth and potency of these responses in patients upon initial presentation and before treatment, we determined the fine specificities and frequencies of gamma interferon (IFN-gamma)-secreting CD8(+) T cells recognizing all HIV-1 proteins in patients with primary infection. In these subjects, the earliest detected responses were directed predominantly against Nef, Tat, Vpr, and Env. Tat- and Vpr-specific CD8(+) T cells accounted for the greatest frequencies of mean IFN-gamma spot-forming cells (SFC). Nef-specific responses (10 of 21) were more commonly detected. A mean of 2.3 epitopes were recognized with various avidities per subject, and the number increased with the duration of infection (R = 0.47, P = 0.031). The mean frequency of CD8(+) T cells (985 SFC/10(6) peripheral blood mononuclear cells) correlated with the number of epitopes recognized (R = 0.84, P < 0.0001) and the number of HLA-restricting alleles (R = 0.79, P < 0.0001). Neither the total SFC frequencies nor the number of epitopes recognized correlated with the concurrent plasma viral load. Seventeen novel epitopes were identified, four of which were restricted to HLA alleles (A23 and B72) that are common among African descendents. Thus, primary HIV-1 infection induces strong CD8(+)-T-cell immunity whose specificities broaden over time, but their frequencies and breadth do not correlate with HIV-1 containment when examined concurrently. Many novel epitopes, particularly directed to Nef, Tat, and Env, and frequently with unique HLA restrictions, merit further consideration in vaccine design.  相似文献   

19.
Human papillomavirus (HPV) antigens are expressed in epithelial cells at different stages of differentiation, and this may affect how they are handled by the immune system. We assessed the relative immunogenicities of four different HPV type 1 proteins: E6 and E7, which are made early in basal or parabasal cells; E4, which is made suprabasally in differentiating cells; and L1, a late protein which appears in the highly differentiated upper spinous layers. Pools of 15-mer peptides covering the primary sequences of all four proteins were used to screen 15 normal donors in enzyme-linked immunospot assays of gamma interferon release for both CD4(+)- and CD8(+)-T-cell reactivities. CD8(+)-T-cell responses were detected to the L1 protein in 7 of the 15 samples examined. No responses to E6, E7, or E4 were detected. CD4(+)-T-cell reactivities were again detected in 7 of the 15 donors. A broader spectrum of responses to E6 (three of seven), E4 (six of seven), and L1 (three of seven) was apparent, but there was no reactivity to E7. The predominant CD4(+) response was to E4. Reactivities were seen in some cases to corresponding regions on other common HPV types but were probably due to a multiple infection rather than to a cross-reaction. Antibodies to HPV1 virus-like particles were detected in 12 of the 15 (80%) donors, but antibody status did not correlate with T-cell reactivity. The differences in the relative immunogenicities of the four proteins revealed in this study are discussed in relation to how they may be processed and presented to the immune system by differentiating epithelial cells.  相似文献   

20.
Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8(+) T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8(+) T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8(+) T cell responses to MCMV - both conventional memory responses and those undergoing long-term expansion or "inflation". We infected LMP7(-/-) and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8(+) T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory "inflating" epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8(+) T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号