首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two cholesterol 7 alpha-hydroxylase isozymes were purified from liver microsomes of cholestyramine-treated female rats by using anion exchange high performance liquid chromatography. These two cytochrome P-450 isozymes were similar in electrophoretic mobility, immunocross-reactivity, and Vmax but differed in Km for cholesterol, turnover number, and charges. Antibody against the major isozyme was raised in rabbit. This antibody specifically inhibited microsomal cholesterol 7 alpha-hydroxylase activity. Immunoblot of microsomal polypeptides indicated that microsomal cholesterol 7 alpha-hydroxylase enzyme levels were increased in parallel with cholesterol 7 alpha-hydroxylase activity upon the treatment of rats with diet supplemented with cholestyramine. Both cholesterol 7 alpha-hydroxylase activity and enzyme levels were drastically reduced immediately after the removal of cholestyramine from the diet. Cholesterol 7 alpha-hydroxylase activity was also detected in the microsomes of kidney, heart, and lung in about 7-27% of the level found in the liver. 3-Methylcholanthrene treatment induced cholesterol 7 alpha-hydroxylase activity and enzyme level. In contrast, pregnenolone-16 alpha-carbonitrile or dexamethasone treatment greatly depressed enzyme and activity in rats. Cholesterol 7 alpha-hydroxylase enzyme level was 2-3-fold higher in liver microsomes of rats maintained under the reversed light cycle than under the normal light cycle. In genetically obese Zucker rats, cholesterol 7 alpha-hydroxylase activity and enzyme level did not respond to the change in the light cycle, however, were induced to the same levels as in the lean rats by cholestyramine treatment. This study provided the first direct evidence that the bile acid feedback regulation and circadian rhythm of microsomal cholesterol 7 alpha-hydroxylase activity involved the induction of cholesterol 7 alpha-hydroxylase enzyme level.  相似文献   

2.
We describe an accurate method for monitoring the enzymatic activity of hepatic cholesterol 7alpha-hydroxylase (C7alphaOH; CYP7A1), the rate-limiting and major regulatory enzyme in the synthesis of bile acids. Assay of 7alpha-hydroxy-4-cholesten-3-one (C4), an intermediate in bile acid synthesis, revealed that the level of C4 in peripheral blood serum or plasma showed a strong correlation to the enzymatic activity of hepatic C7alphaOH, both at steady-state conditions (r = 0.929) as well as during the rapid changes that occur during the diurnal phases. This assay should be of value in clarifying the regulation of bile acid synthesis in vivo in laboratory animals and humans since it allows for the monitoring of hepatic C7alphaOH activity using peripheral blood samples.  相似文献   

3.
In the chronic bile fistula rat, the administration of a bolus dose of mevinolinic acid, an inhibitor of HMG-CoA reductase, was followed by rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and a decrease in bile acid synthesis. These observations suggested that either newly synthesized cholesterol or some other metabolite of mevalonate may be involved in the regulation of bile acid synthesis. In order to distinguish between these two alternatives, we carried out experiments in which cholesterol synthesis was blocked by AY9944, a compound that inhibits the conversion of 7-dehydrocholesterol to cholesterol, a last step in the cholesterol biosynthesis pathway. Rats underwent biliary diversion for 72 h at which time they were given intravenously either a bolus dose of AY9944 (1 mg/kg) or control vehicle. At 0 (pre-treatment control), 0.5, 1.5, and 3 h post bolus, livers were harvested and specific activities of cholesterol 7 alpha-hydroxylase were determined. At 1.5, 3, and 6 h post bolus, AY9944 inhibited bile acid synthesis by 19 +/- 6%, 40 +/- 4%, and 41 +/- 6%, respectively, as compared to pretreatment baseline. Cholesterol 7 alpha-hydroxylase activity determined at 0.5, 1.5, and 3 h was decreased by 44 +/- 6%, 44 +/- 2%, and 36 +/- 2%, respectively, as compared to the control value. In in vitro experiments using microsomes from livers of control bile fistula rats, the addition of AY9944 (up to 100 microM) failed to inhibit cholesterol 7 alpha-hydroxylase activity. The results of this study demonstrate that, in the chronic bile fistula rat, acute inhibition of cholesterol synthesis at either early or late steps leads to a rapid down-regulation of cholesterol 7 alpha-hydroxylase activity and decrease in bile acid synthesis.  相似文献   

4.
The effect of in vivo variation of hepatic glutathione (using diethyl maleate and L-cysteine) on in vitro cholesterol 7 alpha-hydroxylase activity was studied in male Sprague-Dawley rats. Cholesterol 7 alpha-hydroxylase activity in glutathione-depleted rats (ca. 10% of control glutathione) was significantly reduced compared to that in vehicle-injected controls. While L-cysteine treatment of glutathione-depleted animals increased glutathione levels somewhat (ca. 20% of control glutathione), they were still significantly less than control levels. Similarly, cholesterol 7 alpha-hydroxylase activity in the partially glutathione replete animals was approximately 50% greater than that in the glutathione-depleted animals, but still significantly less than that in the controls. The rate of 7 alpha-hydroxylation of cholesterol was found to be dependent on liver glutathione content. The calculated maximal rate was 34.4 picomoles/mg/min with a half maximal activity at 1.89 mumoles glutathione/gm liver. These results suggest that hepatic glutathione may be an important modulator of in vivo activity of cholesterol 7 alpha-hydroxylase.  相似文献   

5.
We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively. Hepatic bile salt export pump mRNA levels and ileal bile acid-binding protein decreased while sterol 12alpha-hydroxylase and sodium/taurocholate cotransporting polypeptide mRNA levels increased in the liver. In addition, hepatic FXR mRNA levels decreased significantly.The data, taken together, indicate that FXR was deactivated when the bile acid pool was depleted such that CYP7A1 was upregulated. Further, lack of the high affinity ligand supply was associated with downregulation of hepatic FXR mRNA levels.  相似文献   

6.
Bile acid synthesis involves several enzymes and occurs only in liver cells. The first and rate-determining step is catalyzed by cholesterol 7alpha-hydroxylase (cyp7a). McArdle RH7777 hepatoma cells do not synthesize bile acids and do not express the cyp7a gene. A synthetic cyp7a gene was stably expressed in this cell line to determine if restoration of cyp7a activity is sufficient to reconstitute the bile acid synthetic pathway. The transfected cells contained the recombinant cyp7a mRNA and the corresponding protein. Microsomes from recombinant cells converted cholesterol into 7alpha-hydroxycholesterol, indicating that the recombinant enzyme was active. Radiolabeled bile acids, originated from exogenously supplied radiolabeled cholesterol, were detected in the culture medium of recombinant cells. Thus, expression of cyp7a is sufficient in restoring bile acid synthesis in McArdle RH7777 cells. The results also show that the additional complement of enzymatic activities required to convert cholesterol into bile acids has remained active in this cell line.  相似文献   

7.
8.
Addition of foetal-bovine serum to rat hepatocytes cultured in Williams E medium resulted in improved maintenance of bile-acid-synthetic capacity and cholesterol 7 alpha-hydroxylase activity as compared with cultures supplemented with rat or newborn-bovine serum or cultures in a hormonally defined serum-free medium. Minimally, 5% (v/v) foetal-bovine serum was necessary to maintain these liver-specific functions. Serum factor(s) responsible for these effects were not dialysable or associated with lipoproteins, but were removed by charcoal extraction.  相似文献   

9.
To study the effect of cholecystectomy on the regulation of classic and alternative bile acid syntheses, gallbladder-intact (n = 20) and cholecystectomized (n = 20) New Zealand White rabbits were fed either chow or chow with 2% cholesterol (3 g/day). After 10 days, bile fistulas were constructed in half of each rabbit group to recover and measure the bile acid pool and biliary bile acid flux. After cholesterol feeding, the bile acid pool size increased from 268 +/- 55 to 444 +/- 77 mg (P < 0.01) with a 2-fold rise in the biliary bile acid flux in intact rabbits but did not expand the bile acid pool (270 +/- 77 vs. 276 +/- 62 mg), nor did the biliary bile acid flux increase in cholecystectomized rabbits. Ileal apical sodium-dependent bile acid transporter protein increased 46% from 93 +/- 6 to 136 +/- 23 units/mg (P < 0.01) in the intact rabbits but did not change in cholecystectomized rabbits (104 +/- 14 vs. 99 +/- 19 units/mg) after cholesterol feeding. Cholesterol 7alpha-hydroxylase activity was inhibited 59% (P < 0.001) while cholesterol 27-hydroxylase activity rose 83% (P < 0.05) after cholesterol feeding in the intact rabbits but neither enzyme activity changed significantly in cholesterol-fed cholecystectomized rabbits. Fecal bile acid outputs reflecting bile acid synthesis increased significantly in the intact but not in the cholecystectomized rabbits fed cholesterol.Removal of the gallbladder prevented expansion of the bile acid pool after cholesterol feeding as seen in intact rabbits because ileal bile acid transport did not increase. As a result, cholesterol 7alpha-hydroxylase was not inhibited.  相似文献   

10.
11.
Determination of hepatic cholesterol 7alpha-hydroxylase activity in man   总被引:4,自引:0,他引:4  
Methods were developed to determine the activity of the microsomal enzyme cholesterol 7alpha-hydroxylase in human liver. The enzyme assay could be performed with as little as 20 mg of fresh liver tissue, thus making the procedure applicable to specimens obtained by percutaneous liver biopsy. Optimal assay conditions were determined and the identity and radioactive purity of the reaction product, cholest-5-ene-3beta,7alpha-diol (7alpha-hydroxycholesterol) were established. Specific enzyme activity was measured in a number of patients with disorders of lipid metabolism.  相似文献   

12.
In the studies reported herein, we show that two complementary experimental models: inbred strains of mice (i.e. C57BL/6 and C3H/HeJ), and a differentiated line of rat hepatoma cells (i.e. L35 cells), require the activation of cytokines by monocyte/macrophages to display bile acid negative feedback repression of cholesterol 7alpha-hydroxylase (CYP7A1). Feeding a bile acid-containing atherogenic diet for 3 weeks to C57BL/6 mice led to a 70% reduction in the expression of hepatic CYP7A1 mRNA, whereas no reduction was observed in C3H/HeJ mice. The strain-specific response to repression of CYP7A1 paralleled the activation of hepatic cytokine expression. Studies using cultured THP-1 monocyte/macrophages showed that the hydrophobic bile acid chenodeoxycholate, a well established potent repressor of CYP7A1, induced the expression of mRNAs encoding interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFalpha). In contrast, the hydrophilic bile acid ursodeoxycholate, which does not repress CYP7A1, did not induce cytokine mRNA expression by THP-1 cells. Chenodeoxycholate activation of cytokines by THP-1 cells was blocked by the peroxisome proliferator-activated receptor gamma agonist rosiglitazone. The expression of cytokines (e.g. IL-1 and TNFalpha) by THP-1 cells paralleled with the ability of these cells to produce conditioned medium that when added to rat L35 hepatoma cells, repressed CYP7A1. Moreover, rosiglitazone, which blocks cytokine activation by macrophages, also blocked the repression of CYP7A1 normally exhibited by C57BL/6 mice fed the bile acid-containing atherogenic diet. The combined data indicate that the activation of cytokines may mediate CYP7A1 repression caused by feeding mice an atherogenic diet containing bile acids.  相似文献   

13.
14.
Monospecific antibody against purified rat liver cholesterol 7 alpha-hydroxylase cytochrome P-450 was used to screen a lambda gt11 cDNA library constructed from immuno-enriched polysomal RNA of cholestyramine-treated female rat liver. Two types of cDNA clones differing in the length of the 3'-untranslated region were identified, and DNA sequences were determined. The full length clone contains 3561 base pairs plus a long poly(A) tail. The amino acid sequence deduced from the open reading frame revealed a unique P-450 protein containing 503 amino acid residues which belonged to a new gene family designated family VII or CYP7. Southern blot hybridization experiments indicated that the minimal size of P-450 VII gene was 11 kilobase pairs (kb), and there was probably only one gene in this new family. Northern blot hybridization using specific cDNA probes revealed at least two major mRNA species of about 4.0 kb and 2.1 kb, respectively. These two mRNA species may be derived from the use of different polyadenylation signals and reverse-transcribed to two types of cDNA clones. Cholesterol 7 alpha-hydroxylase mRNAs were induced 2- to 3-fold in rat liver by cholestyramine treatment. The mRNA level was rapidly reduced upon the removal of the inducer. Similarly, cholesterol feeding induced enzyme activity, protein, and mRNA levels in the rat by 2-fold, suggesting that cholesterol is an important regulator of cholesterol 7 alpha-hydroxylase in the liver. On the other hand, dexamethasone and pregnenolone-16 alpha-carbonitrile drastically reduced the activity, protein, and mRNA levels. These experiments suggest that the induction of cholesterol 7 alpha-hydroxylase activity by cholestyramine or cholesterol and inhibition of cholesterol 7 alpha-hydroxylase activity by bile acid feedback are results of the rapid turnover of cholesterol 7 alpha-hydroxylase enzyme and mRNA levels.  相似文献   

15.
16.
Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7alpha-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12alpha-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19-23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7alpha-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool.  相似文献   

17.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

18.
A 7 alpha-hydroxylation is necessary for conversion of both cholesterol and 27-hydroxycholesterol into bile acids. According to current theories, cholesterol 7 alpha-hydroxylase (CYP7A) is responsible for the former and oxysterol 7 alpha-hydroxylase (CYP7B) for the latter reaction. CYP7A is believed to have a very high substrate specificity whereas CYP7B is active toward oxysterols, dehydroepiandrosterone, and pregnenolone. In the present study, 7 alpha-hydroxylation of various oxysterols in liver and kidney was investigated. Surprisingly, human cholesterol 7 alpha-hydroxylase, CYP7A, expressed as a recombinant in Escherichia coli and COS cells, was active toward 20(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol. This enzyme has previously been thought to be specific for cholesterol and cholestanol. A partially purified and reconstituted cholesterol 7 alpha-hydroxylase enzyme fraction from pig liver showed 7 alpha-hydroxylase activity toward the same oxysterols as metabolized by expressed recombinant human and rat CYP7A. The 7 alpha-hydroxylase activity toward 20(S)-hydroxycholesterol, 25-hydroxycholesterol, and 27-hydroxycholesterol in rat liver was significantly increased by treatment with cholestyramine, an inducer of CYP7A. From the present results it may be concluded that CYP7A is able to function as an oxysterol 7 alpha-hydroxylase, in addition to the previously known human oxysterol 7 alpha-hydroxylase, CYP7B. These findings may have implications for oxysterol-mediated regulation of gene expression and for pathways of bile acid biosynthesis. A possible use of 20(S)-hydroxycholesterol as a marker substrate for CYP7A is proposed.  相似文献   

19.
Bile acids are synthesized via the classic pathway initiated by cholesterol 7alpha-hydroxylase (CYP7A1), and via alternate pathways, one of which is initiated by sterol 27-hydroxylase (CYP27). These studies used mice lacking cholesterol 7alpha-hydroxylase (Cyp7a1(-/-)) to establish whether the loss of the classic pathway affected cholesterol homeostasis differently in males and females, and to determine if the rate of bile acid synthesis via alternate pathways was responsive to changes in the enterohepatic flux of cholesterol and bile acids. In both the Cyp7a1(-/-) males and females, the basal rate of bile acid synthesis was only half of that in matching Cyp7a1(+/+) animals. Although bile acid pool size contracted markedly in all the Cyp7a1(-/-) mice, the female Cyp7a1(-/-) mice maintained a larger, more cholic acid-rich pool than their male counterparts. Intestinal cholesterol absorption in the Cyp7a1(-/-) males fell from 46% to 3%, and in the matching females from 58% to 17%. Bile acid synthesis in Cyp7a1(+/+) males and females was increased 2-fold by cholesterol feeding, and 4-fold by cholestyramine treatment, but was not changed in matching Cyp7a1(-/-) mice by either of these manipulations. In the Cyp7a1(-/-) mice fed cholesterol, hepatic cholesterol concentrations increased only marginally in the males, but rose almost 3-fold in the females. CYP7A1 activity and mRNA levels were greater in females than in males, and were increased by cholesterol feeding in both sexes. CYP27 activity and mRNA levels did not vary as a function of CYP7A1 genotype, gender, or dietary cholesterol intake. We conclude that in the mouse the rate of bile acid synthesis via alternative pathways is unresponsive to changes in the enterohepatic flux of cholesterol and bile acid, and that factors governing gender-related differences in bile acid synthesis, pool size, and pool composition play an important role in determining the impact of CYP7A1 deficiency on cholesterol homeostasis in this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号