首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(4):525-539
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure.Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.  相似文献   

2.
In this work, a two dimensional (2D) finite element foot model was established from magnetic resonance imaging (MRI) of a male subject. The model comprises first medial planar cross-section through the foot, representing the foot in standing posture. For specified external load, the stress and strain distribution field under foot structure are determined. The material characterization of foot structure components are stronger related to diabetic phenomena. The new material model for soft tissue based on mixture theory is proposed. The linear finite element model replaced by nonlinear counterpart with segment-to-segment contact element.  相似文献   

3.
在糖尿病足患者溃疡创面分泌物中,基质金属蛋白酶9 (matrix metalloproteinase-9,MMP-9)过高是预测糖尿病足的发生及足溃疡难愈的主要指标,其可能的机制包括:高水平MMP-9降低VEGF的表达、抑制成纤维细胞的生物学行为影响糖尿病足溃疡愈合;失衡的MMP-9/TIMP-1比值影响糖尿病足溃疡愈合。选择性MMP-9抑制剂(包括小分子抑制剂、高级伤口辅料抑制剂、基于干扰基因水平表达的RNA抑制剂)可以作为促进糖尿病足溃疡愈合的手段,但仍需大样本、多中心随机对照试验以及长期随访进一步验证其疗效及安全性。现查阅近年来涉及MMP-9和糖尿病足溃疡相关的文献,综述MMP-9对糖尿病足溃疡愈合的影响及其机制研究进展。  相似文献   

4.
Angiogenesis consists of the growth of new blood vessels from the pre-existing vasculature. This phenomenon takes place in several biological processes, including wound healing. In this work, we present a mathematical model of angiogenesis applied to skin wound healing. The developed model includes biological (capillaries and fibroblasts), chemical (oxygen and angiogenic growth factor concentrations) and mechanical factors (cell traction forces and extracellular matrix deformation) that influence the evolution of the healing process. A novelty from previous works, apart from the coupling of angiogenesis and wound contraction, is the more realistic modelling of skin as a hyperelastic material. Large deformations are addressed using an updated Lagrangian approach. The coupled non-linear model is solved with the finite element method, and the process is studied over two wound geometries (circular and elliptical) of the same area. The results indicate that the elliptical wound vascularizes two days earlier than the circular wound but that they experience a similar contraction level, reducing its size by 25 %.  相似文献   

5.
The use of stem or progenitor cells from bone marrow, or peripheral or umbilical cord blood is becoming more common for treatment of diabetic foot problems. These cells promote neovascularization by angiogenic factors and they promote epithelium formation by stimulating cell replication and migration under certain pathological conditions. We investigated the role of CD34 + stem cells from human umbilical cord blood in wound healing using a rat model. Rats were randomly divided into a control group and two groups with diabetes induced by a single dose of 55 mg/kg intraperitoneal streptozocin. Scarred areas 5 mm in diameter were created on the feet of all rats. The diabetic rats constituted the diabetes control group and a diabetes + stem cell group with local injection into the wound site of 0.5 × 106 CD34 + stem cells from human umbilical cord blood. The newly formed skin in the foot wounds following CD34 + stem cell treatment showed significantly improvement by immunohistochemistry and TUNEL staining, and were closer to the wound healing of the control group than the untreated diabetic animals. The increase in FGF expression that accompanied the local injection of CD34 + stem cells indicates that FGF stimulation helped prevent apoptosis. Our findings suggest a promising new treatment approach to diabetic wound healing.  相似文献   

6.
Diabetic foot ulcers are a major complication of diabetes that occurs following minor trauma. Diabetes-induced hyperglycemia is a leading factor inducing ulcer formation and manifests notably through the accumulation of advanced glycation end-products (AGEs) such as N-carboxymethyl-lysin. AGEs have a negative impact on angiogenesis, innervation, and reepithelialization causing minor wounds to evolve into chronic ulcers which increases the risks of lower limb amputation. However, the impact of AGEs on wound healing is difficult to model (both in vitro on cells, and in vivo in animals) because it involves a long-term toxic effect. We have developed a tissue-engineered wound healing model made of human keratinocytes, fibroblasts, and endothelial cells cultured in a collagen sponge biomaterial. To mimic the deleterious effects induced by glycation on skin wound healing, the model was treated with 300 µM of glyoxal for 15 days to promote AGEs formation. Glyoxal treatment induced carboxymethyl-lysin accumulation and delayed wound closure in the skin mimicking diabetic ulcers. Moreover, this effect was reversed by the addition of aminoguanidine, an inhibitor of AGEs formation. This in vitro diabetic wound healing model could be a great tool for the screening of new molecules to improve the treatment of diabetic ulcers by preventing glycation.  相似文献   

7.
8.
Sustained infection and chronic inflammation are the most common features and complex mechanisms of diabetic foot disease. In this study, we examined the expression and functional roles of human endogenous α defensins in diabetic foot ulcer. The expression levels of human α defensins HNP1, HNP3, and HNP4 were significantly higher in the wound center than the edge of diabetic foot ulcers. And the inflammatory cytokine interleukin IL‐8 (IL‐8) was also highly expressed in wound exudates. In human foreskin fibroblasts, these human α defensins were found only slightly to affect IL‐8 expression directly. hemoglobin A1C (HbA1c) is the main clinical indicator of diabetic foot disease. Advanced glycation end products of bovine serum albumin (AGE‐BSA), as HbA1c analogue, was found to promote IL‐8 expression. Human α defensins, in the presence of AGE‐BSA, further significantly promoted IL‐8 expression. These findings showed that human α defensins aggravated the inflammatory response in diabetic foot ulcers patients, providing new insights in to the poor healing of diabetic foot ulcers.  相似文献   

9.
Diabetic foot ulcers often pose a difficult problem for health care professionals because of the defects associated with fibroblast functioning. Although there has been much interest recently in the use of topical growth factors for the treatment of diabetic foot ulcers, the effects are generally not very dramatic. Cryopreserved fibroblast implants, which are able to adjust to a wound's environment and provide the desired growth factors and other substances that may be lacking in a chronic wound, represent an exciting development and a major advance. These products may well provide growth factors in the right concentration and in the right sequence, something that has proved difficult to achieve with the topical application of recombinant growth factors. However, cell activities are impaired by cryopreservation. The purpose of this study was to assess the effects of fresh human allogeneic fibroblast grafting for the treatment of diabetic foot ulcers. Eight patients with diabetic foot ulcers ranging from 6 to 17 weeks in duration were treated. The size of the wounds ranged from 2.0 to 6.0 cm2, with three patients exhibiting exposed bones. A history of diabetic foot ulcers was present in five patients. Human dermal fibroblasts from healthy teenagers were cultured in Dulbecco's modified Eagle medium/Ham's F-12 supplemented with 10% autologous serum. The cultured cells were applied over the wounds immediately after debridement; fibrin was used as a cell carrier. A dressing was then applied with Tegaderm and kept moist until healing was complete. The progress and time for complete wound closure and patient satisfaction were assessed, with follow-up time ranging from 6 to 18 months. Complete wound healing occurred in all patients. Eleven to 21 days were needed for complete reepithelization of the wound, and no clinical or laboratory abnormalities were noted. Patient satisfaction was also very positive. In this study, the use of fresh human fibroblast allografts was found to be a safe and effective treatment for diabetic foot ulcers.  相似文献   

10.
We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of furthering the understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca2+ and crossbridge dynamics, to events at the level of the entire organ. At the organ level, parenchymal tissue is modelled using a continuum approach as a compressible, hyperelastic material in three dimensions, with expansion and recoil of lung tissue due to tidal breathing. The governing equations of finite elasticity deformation are solved using a finite element method. The airway tree is embedded in this tissue, where each airway is modelled with its own airway wall, smooth muscle and surrounding parenchyma. The tissue model is then linked to models of the crossbridge mechanics and their control by Ca2+ dynamics, thus providing a link to molecular and cellular mechanisms in airway smooth muscle cells. By incorporating and coupling the models at these scales, we obtain a detailed, computational multiscale model incorporating important physiological phenomena associated with asthma.  相似文献   

11.
BackgroundSeveral epidemiological studies in diabetic patients have demonstrated a protective effect of metformin to the development of several types of cancer. The underlying mechanisms of such phenomenon is related to the effect of metformin on cell proliferation among which, mTOR, AMPK and other targets have been identified. However, little is known about the role that metformin treatment have on other cell types such as keratinocytes and whether exposure to metformin of these cells might have serious repercussions in wound healing delay and in the development of complications in diabetic patients with foot ulcers or in their exacerbation.ResultsMetformin treatment significantly reduces cell proliferation; colony formation and alterations of the cell cycle are observed also in the metformin treated cells, particularly in the S phase. There is a significant increase in the area of the wound of the metformin treated animals at different time points (P<0.05). There is also a significant increase in the size and wound area of the patients with diabetic foot ulcers at the time of hospitalization. A protective effect of metformin was observed for amputation, probably associated with the anti inflammatory effects reported of metformin.ConclusionsMetformin treatment reduces cell proliferation and reduces wound healing in an animal model and affects clinical outcomes in diabetic foot ulcer patients. Chronic use of this drug should be further investigated to provide evidence of their security in association with DFU.  相似文献   

12.
目的:探讨封闭负压引流(VAC)对兔糖尿病溃疡创面组织愈合的影响及其可能机制。方法:采用四氧嘧啶法建立兔糖尿病溃疡模型,设空白对照组和实验组(对照组创面采用常规包扎治疗处理,实验组创面则采用VAC处理),观察和比较两组动物的创面肉眼观、愈合时间,在致伤前、致伤后3 d、7 d、14 d取创面软组织,检测和比较两组动物的创面组织含水量、血流量以及血浆ET-1和NO含量。结果:与对照组比较,实验组动物的创面肿胀及分泌物得到明显控制,创面坏死组织的清除与肉芽组织的生长明显加快,平均愈合时间明显缩短(P0.05);致伤后3 d、7 d和14 d,创面组织含水量与血浆ET-1含量明显下降(P0.05),创面组织血流量与血浆NO含量明显增加(P0.05)。结论:VAC对兔糖尿病溃疡创面组织的愈合可起到积极的促进作用,这可能与其增加血浆NO含量及降低ET-1的含量有关,其具体机制尚有待于进一步的研究。  相似文献   

13.
目的:讨论创面负压治疗促进肝硬化合并糖尿病并发糖尿病足的临床疗效。方法:将30例慢性肝硬化合并糖尿病并发糖尿病足患者随机分为创面负压治疗组和敷料包扎组,观察两组创面细菌负荷及创面微循环血流量变化。结果:清创即刻,负压创面治疗组和敷料包扎组细菌负荷与创面微循环血流量无显著差异(P>0.01);创后3天、6天和9天时,负压创面组创面细菌负荷低于敷料包扎组(P<0.01),创面微循环血流量高于敷料包扎组(P<0.01)。负压创面组创面愈合时间少于敷料包扎组(P<0.01)。结论:负压创面治疗有助于慢性肝硬化并发糖尿病合并糖尿病足的创面愈合。  相似文献   

14.
目的:探讨自体富血小板凝胶联合冷沉淀制剂对糖尿病足溃疡患者创面愈合、血管生成因子及生活质量的影响。方法:选取西宁市第一人民医院于2016年8月~2018年8月间收治的糖尿病足溃疡患者54例,依据数表法将患者随机分为对照组(n=27)和观察组(n=27)。对照组采用常规基础治疗,观察组在对照组基础上序贯使用自体富血小板凝胶联合冷沉淀制剂治疗。比较两组疗效、溃疡愈合时间、住院时间,比较两组患者治疗前及治疗20d后的肉芽组织中碱性成纤维细胞生长因子(bFGF)和血管内皮细胞生长因子(VEGF)表达水平以及糖尿病患者生存质量特异性量表评分。结果:观察组总有效率高于对照组(P0.05)。观察组溃疡愈合时间和住院时间均明显短于对照组,差异有统计学意义(P0.05)。治疗20d后,两组患者肉芽组织bFGF、VEGF表达水平均明显升高(P0.05),且观察组肉芽组织bFGF、VEGF表达水平均明显高于对照组(P0.05)。治疗20d后,两组患者生理功能、社会关系、心理或精神以及治疗影响四个维度评分均明显下降(P0.05),且观察组低于对照组(P0.05)。结论:自体富血小板凝胶联合冷沉淀制剂治疗糖尿病足溃疡疗效确切,可提高患者生活质量,可促进肉芽组织中血管生成和创面愈合。  相似文献   

15.
Irrespective of underlying chronic wound pathology, delayed wound healing is normally characterised by impaired new tissue formation at the site of injury. It is thought that this impairment reflects both a reduced capacity to synthesize new tissue and the antagonistic activities of high levels of proteinases within the chronic wound environment. Historically, wound dressings have largely been passive devices that offer the wound interim barrier function and establish a moist healing environment. A new generation of devices, designed to interact with the wound and promote new tissue formation, is currently being developed and tested. This study considers one such device, oxidised regenerated cellulose (ORC) /collagen, in terms of its ability to promote fibroblast migration and proliferation in vitro and to accelerate wound repair in the diabetic mouse, a model of delayed wound healing. ORC/collagen was found to promote both human dermal fibroblasts proliferation and cell migration. In vivo studies considered the closure and histological characteristics of diabetic wounds treated with ORC/collagen compared to those of wounds given standard treatment on both diabetic and non-diabetic mice. ORC/collagen was found to significantly accelerate diabetic wound closure and result in a measurable improvement in the histological appearance of wound tissues. As the diabetic mouse is a recognised model of impaired healing, which may share some characteristics of human chronic wounds, the results of this in vivo study, taken together with those relating the positive effects of ORC/collagen in vitro, may predict the beneficial use of this device in the clinical setting.  相似文献   

16.
Wang W  Lin S  Xiao Y  Huang Y  Tan Y  Cai L  Li X 《Life sciences》2008,82(3-4):190-204
In order to develop a better wound-dressing to enhance diabetic wound healing, we have examined the biochemical and biophysical features of chitosan-crosslinked collagen sponge (CCCS) and pre-clinically evaluated the CCCS containing recombinant human acidic fibroblast growth factor (CCCS/FGF) in accelerating diabetic wound healing as compared to collagen sponge alone and FGF alone. Collagen crosslinked with chitosan showed several advantages required for wound dressing, including the uniform and porous ultrastructure, less water-imbibition, small interval porosity, high resistance to collagenase digestion and slow release of FGF from CCCS/FGF. Therapeutic effect of the new wound-dressing containing FGF (i.e.: CCCS/FGF) on diabetic wound healing was examined in type 1 diabetic rat model in which hyperglycemia was induced by single dose of streptozotocin (STZ) and persisted for two months. The CCCS/FGF provided the most efficiently therapeutic effect among various treatments, showing the shortest healing time (14 days in the CCCS/FGF-treated group as compared to 18~21 days in other treatment groups), the quickest tissue collagen generation, the earliest and highest TGF-beta1 expression and dermal cell proliferation (PCNA expression). All these results suggest that CCCS/FGF is an ideal wound-dressing to improve the recovery of healing-impaired wound such as diabetic skin wound, which provides a great potential use in clinics for diabetic patients in the future.  相似文献   

17.
Computational Approaches to Solving Equations Arising from Wound Healing   总被引:1,自引:0,他引:1  
In the wound healing process, the cell movement associated with chemotaxis generally outweighs the movement associated with random motion, leading to advection-dominated mathematical models of wound healing. The equations in these models must be solved with care, but often inappropriate approaches are adopted. Two one-dimensional test problems arising from advection-dominated models of wound healing are solved using four algorithms—MATLAB’s inbuilt routine pdepe.m, the Numerical Algorithms Group routine d03pcf.f, and two finite volume methods. The first finite volume method is based on a first-order upwinding treatment of chemotaxis terms and the second on a flux limiting approach. The first test problem admits an analytic solution which can be used to validate the numerical results by analyzing two measures of the error for each method: the average absolute difference and a mass balance error. These criteria as well as the visual comparison between the numerical methods and the exact solution lead us to conclude that flux limiting is the best approach to solving advection-dominated wound healing problems numerically in one dimension. The second test problem is a coupled nonlinear three species model of wound healing angiogenesis. Measurement of the mass balance error for this test problem further confirms our hypothesis that flux limiting is the most appropriate method for solving advection-dominated governing equations in wound healing models. We also consider two two-dimensional test problems arising from wound healing, one that admits an analytic solution and a more complicated problem of blood vessels growth into a devascularized wound bed. The results from the two-dimensional test problems also demonstrate that the flux limiting treatment of advective terms is ideal for an advection-dominated problem.  相似文献   

18.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

19.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号