首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The UV-sensitivity ofEscherichia coli 15 T, U, his cells after a 45 minutes glucose, thymine uracil, or histidine pre-irradiation starvation, as well as the course of DNA, RNA, and protein synthesis during starvation and during a 60 minute post-treatment in a complete medium were investigated. An increased radioresistance was observed when starvation for some compounds resulted in a consequent inhibition of protein synthesis, as it was observed in the case of glucose, histidine, or uracil starvation. During thymine starvation, which led to a decreased resistance, no inhibition of protein synthesis was recorded. The postirradiation time-course of DNA synthesis did not show any correlation with the increased rate of resistance. The DNA synthesis after U pre-treatment was greatly delayed, however, after glucose pre-treatment no retardation was observed although both factors increased the rate of surviving cells approximately to the same extent. We assume that the factors which increase the radio-resistance could act by a similar mechanism which would take part in the inhibition of protein synthesis. This mechanism could consist in a decrease of the m-RNA turnover.  相似文献   

2.
The loss of colony-forming ability and lysis of cells were studied after pulse-interrupted thymine starvation of a culture ofEscherichia coli 15 TAU which before starvation grew exponentially or was synchronized by starvation for arginine and uracil. Even a 5-minute pulse cancelled the effects of previous starvation leading to lysis, while loss of colony-forming ability after pulse was changed only slightly. The course of lysis and thymineless death after synchronization did not depend on the presence or absence of thymine during about a 40-min interval just after synchronization. With an appropriate time-schedule of pulses, it was possible to prolong the total time of interrupted starvation after which lysis did not appear.  相似文献   

3.
The phenomenon of metabolic mutagenesis is found to be determined by stabilization of metabolic breaks in DNA chains, being linked with disbalance of intracellular synthesis of DNA and protein. The rate of metabolic mutagenesis observed in case of the DNA-protein synthesis disbalance due to thymine starvation is influenced by cell genotype. The lack of exonuclease V in recB-thy- cells decreases (reduces) the rate of metabolic mutagenesis and does not effect the viability. The lack of DNA polymerase I activity in polA-thy- cells causes a sharp increase in the metabolic mutagenesis rate and a parallel sharp drop in the survival under thymine starvation, as compared to cells with polA+thy- genotype.  相似文献   

4.
Extensive cell division after synchronization ofEscherichia coli 15 TAU by arginine and uracil starvation occurs only when DNA synthesis is permitted to proceed by at least a short pulse of thymine applied between 30 and 60 min after transfer of synchronized culture to thymine-free medium with arginine and uracil. The time schedule of synchronized cell division in dependence on the schedule of intervals of DNA synthesis and inhibition of DNA synthesis was determined. The termination of replication cycles which were not completed to the very end during arginine and uracil starvation seems to be the decisive event for subsequent cell division after synchronization.  相似文献   

5.
Hiraga, Sota (Osaka University, Osaka, Japan). Regulation of synthesis of alkaline phosphatase by deoxyribonucleic acid synthesis in a constitutive mutant of Bacillus subtilis. J. Bacteriol. 91:2192-2199. 1966.-It was found that synthesis of alkaline phosphatase (APase) correlated with deoxyribonucleic acid (DNA) synthesis in a partially constitutive mutant of Bacillus subtilis. When cultures of the mutant were made to undergo synchronous growth by germination of spores in an excess-phosphate medium, synthesis of APase was repressed at the beginning of DNA synthesis. If the initiation of DNA synthesis was inhibited by thymine starvation, the repression of APase was not observed. When DNA synthesis, previously initiated, was inhibited by thymine or uracil starvation, or by addition of mitomycin C, the repression was partially released at a later stage. In contrast, this correlation between repression and DNA synthesis was not observed in a repressible strain.  相似文献   

6.
At 45 C, in a temperature-sensitive initiation mutant (TsB134) of Bacillus subtilis 168 Thy- tryp-, growing in a glucose-arginine minimal medium, chromosome completion occurred over a period of 80 to 90 min, after which there was no further nuclear division. Normal symmetrical cell divisions continued for a generation afterwards, so that nuclei were segregated into separate cells. During this period asymmetric divisions started to occur. Septa appeared at 25 to 30% from one end of the cell, giving a small anucleate cell and a larger nucleate cell. During inhibition of deoxyribonucleic acid (DNA) synthesis by thymine starvation under the restrictive conditions, asymmetrical division also occurred until there was approximately one nucleus per cell (about one generation time). Asymmetric division, giving anucleate cells, then occurred. Similar results were obtained when DNA synthesis was inhibited by nalidixic acid. After 3 h at 45 C, the rate of anucleate cell production in the presence and absence of thymine was constant at one division per 85 min per chromosome terminus present when DNA synthesis stopped. In the absence of DNA synthesis (during thymine starvation) at 35 C, growth in cell length was linear (i.e., the rate was constant), but at 45 C during thymine starvation the rate gradually increased by more than twofold. It is suggested that this was due to the establishment of new sites of growth associated with anucleate cell production. In the presence of thymine at 45 C, the rate of length extension increased by more than fourfold, which it is suggested was caused by the appearance of new growth zones as a result of chromosome termination and a contribution associated with anucleate cell production. If the mutant was incubated at 45 C for 90 min, both in the presence and absence of thymine, then anucleate cell formation could continue on restoration to 35 C in the absence of thymine...  相似文献   

7.
Survival and the synthesis of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein were measured during incubation of a thymine auxotroph of Escherichia coli in a series of media containing thymine concentrations below the optimal level of 2 mug/ml. The rate of increase in viable count gradually diminishes to no net growth with 0.2 mug/ml. With lower concentrations of thymine, the rate of cell death gradually increases, resulting in a typical thymineless death curve with 0.02 mug/ml. Both the rate of cell growth and the rate of cell inactivation vary linearly with the thymine concentration. Thirty minutes of incubation in media containing limiting concentrations of thymine before a shift to complete thymine starvation results in a progressive decrease in the length of the lag period preceding thymineless death. These data suggest that only one type of cellular damage occurs during the various degrees of thymine limitation. Prolonged preincubation in media containing 0.1 to 0.2 mug/ml of thymine results in an immunity to thymineless death. This immunity differs from that observed with amino acid-starved cells in its kinetics; ultraviolet irradiation of preincubated cells indicates that the cells are inactivated at the same rate as log-phase cells. These results suggest that the immunity is not associated with chromosome alignment. Thymine concentrations between 2 mug/ml and 0.2 mug/ml permit essentially the same amount of protein and RNA synthesis. The total amount of synthesis then decreases linearly to 40 to 50% of the control level with further reduction in the amount of thymine present. Protein and RNA synthesis are first affected at the same thymine concentration at which lethality is first detectable, and this correlation suggests that the synthesis of these macromolecules is involved in the mechanism of thymineless death. DNA synthesis, on the other hand, is directly dependent on the thymine concentration for levels of 0.5 mug/ml or less. There are no critical changes in DNA synthesis associated with lethality, and DNA synthesis is still occurring under conditions of thymine limitation which result in immunity. These observations suggest that DNA synthesis is not directly involved in thymineless death.  相似文献   

8.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

9.
Evidence for premature initiation of deoxyribonucleic acid (DNA) replication after thymine starvation of Bacillus subtilis W23T(-) is presented, based on (i) increase in the number of ade(+) relative to met(+) transformants yielded by the DNA isolated from cultures after starvation (the ade(-) marker being near the origin of replication, whereas met(-) is close to the terminus), and (ii) increase in both the initial rate and final level of tritiated thymine incorporation in the presence of chloramphenicol after release from starvation. The marker ratio data agree quantitatively with the hypothesis that the initiation is induced only on one arm of each chromosome which was replicating prior to starvation.  相似文献   

10.
The effects of thymine limitation on the rates of growth, deoxyribonucleic acid (DNA) synthesis, and increase in viable cell number for a thymine auxotroph of Proteus mirabilis were investigated. At thymine concentrations of 1.0 mug/ml and below, these rates were markedly decreased. After a reduction in thymine concentration from 10 mug/ml to 0.2 mug/ml, mass synthesis continued at the preshift rate for several hours. In contrast, the rate of DNA synthesis immediately decreased, resulting in a decrease in the DNA to mass ratio to about one-half of its normal level. Viable counts remained constant for several hours after the reduction in thymine concentration, and enlarged cells and multicellular "snakes" were formed. The rate of DNA synthesis was reduced at thymine concentrations below approximately 1.7 mug/ml. The addition of thymine to cultures which had been completely starved for thymine increased the rate of DNA synthesis to at least twice its normal value; this suggests that extra rounds of chromosome replication can be induced in P. mirabilis as previously observed in Escherichia coli.  相似文献   

11.
In synchronized culture of Escherichia coli, the specific arrest of phospholipid synthesis (brought about by glycerol starvation in an appropriate mutant) did not affect the rate of ongoing DNA synthesis but prevented the initiation of new rounds. The initiation block did not depend on cell age at the time of glycerol removal, which could be before, during, or after the doubling in the rate of phospholipid synthesis (DROPS) and as little as 10 min before the expected initiation. We conclude that the initiation of DNA replication is not triggered by the preceding DROPS but requires active phospholipid synthesis. Conversely, when DNA replication initiation was specifically blocked in a synchronized culture of a dnaC(Ts) mutant, two additional DROPS were observed, after which phospholipid synthesis continued at a constant rate for at least 60 min. Similarly, when DNA elongation was blocked by thymine starvation of a synchronized culture, one additional DROPS was observed, followed by linear phospholipid accumulation. Control experiments showed that specific inhibition of cell division by ampicillin, heat shock, or induction of the SOS response did not affect phospholipid synthesis, suggesting that the arrest of DROPS observed was due to the DNA replication block. The data are compatible with models in which the DROPS is triggered by an event associated with replication termination or chromosome segregation.  相似文献   

12.
Summary Inactivation of the dna B or dna D gene product in Bacillus subtilis stimulates RNA and protein synthesis. Strains containing ts dna B and D mutations have been constructed by introducing the mutations by transformation into a thymine requiring strain which does not lyse during thymine starvation. The consequences of inactivation of these gene products have been assessed by comparing RNA and protein synthesis during thymine starvation at the restrictive temperature with the recipient strain. In the ts + strain, there is a doubling in rate of RNA synthesis during thymine starvation. In the ts dna B and D mutations at the restrictive temperature the rate of RNA synthesis increases four fold. By preincubating the mutants in the absence of thymine for one generation at the permissive temperature the two fold increase in rate of RNA synthesis associated with inactivation of the initiation complex can be demonstrated under conditions where the ts + strain shows a decrease in rate of RNA synthesis. The rate of protein synthesis observed largely reflects the rate of RNA synthesis in all strains. Completion of the chromosome at the restictive temperature has no significant effect on the rate of RNA synthesis. It is suggested that inactivation of the initiation complex after chromosome initiation could play an important role in control of RNA synthesis in relation to the cell cycle.  相似文献   

13.
Thymine deprivation in thyA mutant E. coli causes thymineless death (TLD) and is the mode of action of popular antibacterial and anticancer drugs, yet the mechanisms of TLD are still unclear. TLD comprises three defined phases: resistance, rapid exponential death (RED) and survival, with the nature of the resistance phase and of the transition to the RED phase holding key to TLD pathology. We propose that a limited source of endogenous thymine maintains replication forks through the resistance phase. When this source ends, forks undergo futile break-repair cycle during the RED phase, eventually rendering the chromosome non-functional. Two obvious sources of the endogenous thymine are degradation of broken chromosomal DNA and recruitment of thymine from stable RNA. However, mutants that cannot degrade broken chromosomal DNA or lack ribo-thymine, instead of shortening the resistance phase, deepen the RED phase, meaning that only a small fraction of T-starved cells tap into these sources. Interestingly, the substantial chromosomal DNA accumulation during the resistance phase is negated during the RED phase, suggesting futile cycle of incorporation and excision of wrong nucleotides. We tested incorporation of dU or rU, finding some evidence for both, but DNA-dU incorporation accelerates TLD only when intracellular [dUTP] is increased by the dut mutation. In the dut ung mutant, with increased DNA-dU incorporation and no DNA-dU excision, replication is in fact rescued even without dT, but TLD still occurs, suggesting different mechanisms. Finally, we found that continuous DNA synthesis during thymine starvation makes chromosomal DNA increasingly single-stranded, and even the dut ung defect does not completely block this ss-gap accumulation. We propose that instability of single-strand gaps underlies the pathology of thymine starvation.  相似文献   

14.
Bacillus subtilis carrying an inducible defective phage is several times more sensitive to thymineless death than a mutagenized derivative that behaves as a nonlysogen. When the integrity of the deoxyribonucleic acid (DNA) of both strains was examined during thymine starvation by transformation experiments, sedimentation studies, and measurements of acid-soluble DNA degradation products, it was shown that extensive DNA breakdown occurred only in the lysogenic strain. During thymine starvation of this strain, there is a progressive proclivity to lysis, followed by leakage of DNA and DNA degradation products. Such leakage was not observed in the nonlysogen. A correlation between proclivity to lysis and extensive DNA degradation is indicated.  相似文献   

15.
16.
The degree to which the rate of deoxyribonucleic acid synthesis in thy- cultures of Escherichia coli is stimulated after a period of thymine starvation is shown to be a function of the concentration of thymine present as well as of the culture doubling time. Inhibition of deoxyribonucleic acid synthesis by nalidixic acid yields comparable results. Periods of thymine starvation exceeding one doubling time appear to cause an irreversible inactivation of a fraction of the replication forks in the culture.  相似文献   

17.
The lon(-) mutants of Escherichia coli form long filamentous cells after temporary inhibition of deoxyribonucleic acid (DNA) synthesis by ultraviolet irradiation, treatment with nalidixic acid, or thymine starvation. The kinetics of DNA synthesis and cell division after a period of thymine starvation have been compared in lon(+) and lon(-) cells. After this treatment, both kinds of cells recover their normal DNA to mass ratio with the same kinetics. In contrast to previous reports, cell division is found to recommence in both lon(+) and in lon(-) cells after such a temporary period of inhibition of DNA synthesis. However, the delay separating the recommencement of DNA synthesis and of cell division is approximately three times as long in lon(-) as in lon(+) cells. Low concentrations of penicillin inhibit cell division in both lon(+) and lon(-) cells. In this case, cell division recommences with the same kinetics in both strains after the removal of penicillin. This suggests that different steps in the cell division process are blocked by inhibition of DNA synthesis and by penicillin treatment. The lon(-) mutation appears to affect the former of these steps.  相似文献   

18.
Labelled DNA extracted from control and thymine starved cells was qualitatively characterized with respect to sedimentation properties in alkaline sucrose gradients. DNA isolated from cells undergoing loss of division ability demonstrated decreasing sedimentation velocity. Sedimentation profiles of DNA extracted from cells which were starved for thymine under conditions which allowed spontaneous recovery of division ability to occur, demonstrated an increase in DNA sedimentation velocity toward normal control value. It appears that while thymine starvation can result in single strand breaks, this damage is not irreversible, for under certain conditions rejoining of the breaks can occur.  相似文献   

19.
20.
Addition of cyclic adenosine 3'-5'-monophosphate (c-AMP) to growing Escherichia coli cells, colicinogenic for the plasmid ColE1, results in a fourfold stimulation in the rate of synthesis of the plasmid deoxyribonucleic acid (DNA). The stimulation is transient (30 min) and is succeeded by a brief period (30 min) of cessation of plasmid DNA replication. The stimulation of ColE1 DNA replication also occurs in chloramphenicol-treated cells. Rifampin inhibits ColE1 DNA replication in the presence or absence of c-AMP. Employing thymine starvation conditions to stop ColE1 DNA synthesis, it was found that c-AMP, added during the period of thymine starvation, effected a stimulation in the amount of subsequent replication which took place when replicating conditions were restored. The stimulatory effect of c-AMP under these conditions was not prevented by chloramphenicol but was completely eliminated when rifampin was present. Under these conditions, when rifampin was added after the effect of c-AMP was allowed to occur, subsequent replication of the plasmid could take place, but only one round of replication occurred. A model to account for the c-AMP effects is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号