共查询到20条相似文献,搜索用时 7 毫秒
1.
Gram-Negative Bacteria Produce Membrane Vesicles Which Are Capable of Killing Other Bacteria 总被引:9,自引:2,他引:9 下载免费PDF全文
Naturally produced membrane vesicles (MVs), isolated from 15 strains of gram-negative bacteria (Citrobacter, Enterobacter, Escherichia, Klebsiella, Morganella, Proteus, Salmonella, and Shigella strains), lysed many gram-positive (including Mycobacterium) and gram-negative cultures. Peptidoglycan zymograms suggested that MVs contained peptidoglycan hydrolases, and electron microscopy revealed that the murein sacculi were digested, confirming a previous modus operandi (J. L. Kadurugamuwa and T. J. Beveridge, J. Bacteriol. 174:2767–2774, 1996). MV-sensitive bacteria possessed A1α, A4α, A1γ, A2α, and A4γ peptidoglycan chemotypes, whereas A3α, A3β, A3γ, A4β, B1α, and B1β chemotypes were not affected. Pseudomonas aeruginosa PAO1 vesicles possessed the most lytic activity. 相似文献
2.
Xu Y Gao X Wang SH Liu H Williams PA Zhou NY 《Applied and environmental microbiology》2012,78(17):6113-6120
Klebsiella pneumoniae M5a1 is capable of utilizing 3-hydroxybenzoate via gentisate, and the 6.3-kb gene cluster mhbRTDHIM conferred the ability to grow on 3-hydroxybenzoate to Escherichia coli and Pseudomonas putida PaW340. Four of the six genes (mhbDHIM) encode enzymes converting 3-hydroxybenzoate to pyruvate and fumarate via gentisate. MhbR is a gene activator, and MhbT is a hypothetical protein belonging to the transporter of the aromatic acid/H(+) symporter family. Since a transporter for 3-hydrxybenzoate uptake has not been characterized to date, we investigated whether MhbT is responsible for the uptake of 3-hydroxybenzoate, its metabolic intermediate gentisate, or both. The MhbT-green fluorescent protein (GFP) fusion protein was located on the cytoplasmic membrane. P. putida PaW340 containing mhbRΔTDHIM could not grow on 3-hydroxybenzoate; however, supplying mhbT in trans allowed the bacterium to grow on the substrate. K. pneumoniae M5a1 and P. putida PaW340 containing recombinant MhbT transported (14)C-labeled 3-hydroxybenzoate but not (14)C-labeled gentisate and benzoate into the cells. Site-directed mutagenesis of two conserved amino acid residues (Asp-82 and Asp-314) and a less-conserved residue (Val-311) among the members of the symporter family in the hydrophilic cytoplasmic loops resulted in the loss of 3-hydroxybenzoate uptake by P. putida PaW340 carrying the mutant proteins. Hence, we demonstrated that MhbT is a specific 3-hydroxybenzoate transporter. 相似文献
3.
Gram-negative bacteria such as Escherichia coli can normally only take up small peptides less than 650 Da, or five to six amino acids, in size. We have found that biotinylated peptides up to 31 amino acids in length can be taken up by E. coli and that uptake is dependent on the biotin transporter. Uptake could be competitively inhibited by free biotin or avidin and blocked by the protonophore carbonyl m-chlorophenylhydrazone and was abolished in E. coli mutants that lacked the biotin transporter. Biotinylated peptides could be used to supplement the growth of a biotin auxotroph, and the transported peptides were shown to be localized to the cytoplasm in cell fractionation experiments. The uptake of biotinylated peptides was also demonstrated for two other gram-negative bacteria, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa. This finding may make it possible to create new peptide antibiotics that can be used against gram-negative pathogens. Researchers have used various moieties to cause the illicit transport of compounds in bacteria, and this study demonstrates the illicit transport of the largest known compound to date. 相似文献
4.
5.
Uptake and degradation of EDTA by Escherichia coli 总被引:1,自引:0,他引:1
It was found that Escherichia coli exhibited a growth by utilization of Fe(III)EDTA as a sole nitrogen source. No significant growth was detected when Fe(III)EDTA
was replaced by EDTA complexes with other metal ions such as Ca2+, Co2+, Cu2+, Mg2+, Mn2+, and Zn2+. When EDTA uptake was measured in the presence of various ions, it was remarkable only when Fe3+ was present. The cell extract of E. coli exhibited a significant degradation of EDTA only in the presence of Fe3+. It is likely that the capability of E. coli for the growth by utilization of Fe(III)EDTA results from the Fe3+-dependent uptake and degradation of EDTA. 相似文献
6.
Osmoprotection of Escherichia coli by Peptone Is Mediated by the Uptake and Accumulation of Free Proline but Not of Proline-Containing Peptides 下载免费PDF全文
The effect of meat peptone type I (Sigma) on the growth of Escherichia coli cells under hyperosmotic stress has been investigated. Peptone is a complex mixture of peptides with a small content of free amino acids, which resembles nutrients found in natural environments. Our data showed that peptone enhances the growth of E. coli cells in high-osmolarity medium to levels higher than those achieved with the main compatible solute in bacteria, glycine betaine. The mechanism of osmoprotection by peptone comprises the uptake and accumulation of the compatible solute, proline. The main role of the peptides contained in peptone is the provision of nutrients rather than the intracellular accumulation of osmolytes. In contrast to Listeria monocytogenes (M. R. Amezaga, I. Davidson, D. McLaggan, A. Verheul, T. Abee, and I. R. Booth, Microbiology 141:41–49, 1995), E. coli does not accumulate exogenous peptides for osmoprotection and peptides containing proline do not lead to the accumulation of proline as a compatible solute. In late-logarithmic-phase cultures of E. coli growing at high osmolarity plus peptone, proline becomes the limiting factor for growth, and the intracellular pools of proline are not maintained. This is a consequence of the low concentration of free proline in peptone, the catabolism of proline by E. coli, and the inability of E. coli to utilize proline-containing peptides as a source of compatible solutes. Our data highlight the role that natural components in food such as peptides play in undermining food preservation regimes, such as high osmolarity, and also that the specific mechanisms of osmoprotection by these compounds differ according to the organism. 相似文献
7.
8.
Antibacterial Activity of the Lactoperoxidase System in Milk Against Pseudomonads and Other Gram-Negative Bacteria 总被引:15,自引:2,他引:15 下载免费PDF全文
Products of thiocyanate oxidation by lactoperoxidase inhibit gram-positive bacteria that produce peroxide. We found these products to be bactericidal for such gram-negative bacteria as Pseudomonas species and Escherichia coli, provided peroxide is supplied exogenously by glucose oxidase and glucose. By the use of immobilized glucose oxidase the bactericidal agent was shown to be dialyzable, destroyed by heat and counteracted, or destroyed by reducing agents. Because the system is active against a number of gram-negative bacteria isolated from milk, it may possibly be exploited to increase the keeping quality of raw milk. 相似文献
9.
Inactivation of Gram-Negative Bacteria by Lysozyme, Denatured Lysozyme, and Lysozyme-Derived Peptides under High Hydrostatic Pressure 总被引:2,自引:1,他引:2 下载免费PDF全文
Barbara Masschalck Rob Van Houdt Ellen G. R. Van Haver Chris W. Michiels 《Applied microbiology》2001,67(1):339-344
We have studied the inactivation of six gram-negative bacteria (Escherichia coli, Pseudomonas fluorescens, Salmonella enterica serovar Typhimurium, Salmonella enteritidis, Shigella sonnei, and Shigella flexneri) by high hydrostatic pressure treatment in the presence of hen egg-white lysozyme, partially or completely denatured lysozyme, or a synthetic cationic peptide derived from either hen egg white or coliphage T4 lysozyme. None of these compounds had a bactericidal or bacteriostatic effect on any of the tested bacteria at atmospheric pressure. Under high pressure, all bacteria except both Salmonella species showed higher inactivation in the presence of 100 μg of lysozyme/ml than without this additive, indicating that pressure sensitized the bacteria to lysozyme. This extra inactivation by lysozyme was accompanied by the formation of spheroplasts. Complete knockout of the muramidase enzymatic activity of lysozyme by heat treatment fully eliminated its bactericidal effect under pressure, but partially denatured lysozyme was still active against some bacteria. Contrary to some recent reports, these results indicate that enzymatic activity is indispensable for the antimicrobial activity of lysozyme. However, partial heat denaturation extended the activity spectrum of lysozyme under pressure to serovar Typhimurium, suggesting enhanced uptake of partially denatured lysozyme through the serovar Typhimurium outer membrane. All test bacteria were sensitized by high pressure to a peptide corresponding to amino acid residues 96 to 116 of hen egg white, and all except E. coli and P. fluorescens were sensitized by high pressure to a peptide corresponding to amino acid residues 143 to 155 of T4 lysozyme. Since they are not enzymatically active, these peptides probably have a different mechanism of action than all lysozyme polypeptides. 相似文献
10.
11.
The uptake of the aminoacid biosynthesis inhibitor, used as the broad-spectrum herbicide ingredient, glyphosate (N-[phosphonomethyl]-glycine) was investigated in E. coli as a model to study mechanisms of cell resistance to antimetabolites as drugs and pesticides. Unlike the glyphosate-degrading Arthrobacter sp. strain for which the first successful measurement of glyphosate uptake and its inhibition by orthophosphate was reported [15], E. coli K-12 cannot take up this inhibitor either in the presence of orthophosphate, or after a prolonged starvation for it. However, cells made competent after an overnight cold CaCl2 exposure followed by dimethyl sulfoxide (DMSO) treatment could take up this compound (K
m for glyphosate uptake, 274 M). Neither amino acids, belonging to a single transport system, nor orthophosphate gave essential inhibition of glyphosate uptake by these cells. 相似文献
12.
The efficiency of extracellular 2-acyl-lysophospholipid incorporation into Escherichia coli membranes and the acyl donor utilized to acylate the 2-acyl-lysophospholipid was determined. Exogenous 2-acyl-lysophospholipids were acylated via the acyl-acyl carrier protein synthetase/2-acylglycerophosphoethanolamine acyltransferase pathway. The maximum extent of 2-acyl-lysophospholipid incorporation into the membrane was approximately 2.5% of the normal phospholipid biosynthetic rate. 相似文献
13.
The uptakes of (3)H-tetracycline by 12 tetracycline-sensitive and 24 tetracycline-resistant Escherichia coli hospital cultures were found to be 270 and 75 nmoles of tetracycline per milliliter of cell water per 20 min, respectively. This confirms reports by other investigators who, by using only one or two cultures, suggested a relationship between tetracycline uptake and tetracycline resistance. However, minimum inhibitory concentrations of tetracycline for the cultures bore no relation to the tetracycline uptake values, suggesting that loss of tetracycline uptake may not be the primary cause of resistance. In addition there were three resistant cultures with uptake values greater than 140 and two sensitive cultures with uptakes lower than 180, raising the question of how these tetracycline-resistant cultures could grow with tetracycline at concentrations nearly as high as those found to inhibit growth of sensitive organisms. Of the tetracycline-resistant cultures, 15 were able to transfer tetracycline resistance to a recipient organism and 9 were not. Two of the cultures transferred TC-resistance to a recipient with no modification-restriction system (E. coli C) but did not transfer resistance to a recipient with a known modification-restriction system (E. coli K-12). 相似文献
14.
15.
Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed. 相似文献
16.
The inhibition of macromolecular synthesis in Escherichia coli by ionizing radiation has been investigated. The survival of the ability to incorporate arginine, leucine, isoleucine, histidine, uracil, and glucose after various doses of gamma radiation, deuteron and alpha particle bombardment has been measured. All amino acids are incorporated by processes which show the same radiation sensitivity. The sensitivity of uracil corresponds to a volume which is roughly spherical, of radius about 160A, whereas the amino acids possess sensitive regions which are long and thin in character. The uptake of glucose is concerned with a smaller, roughly spherical unit. The possible identification of the radiation-sensitive targets with cellular constituents is discussed. The long thin character observed for amino acids suggests that the sensitive region affected by radiation is an unfolded form of a ribosome, or alternatively a long nucleic acid molecule. For uracil the sensitive region fits with a 70S ribosome, while for glucose a smaller particle would fit the data. 相似文献
17.
T. J. Franklin 《The Biochemical journal》1971,123(2):267-273
1. A membrane fraction from Escherichia coli has been prepared essentially free from ribosomes by treatment of the membranes with Triton X-100 at 0 degrees C followed by differential centrifugation. 2. The ribosome-free membrane vesicles absorbed tetracycline by a reversible temperature-dependent process with an apparent K(m) of 0.029mm at pH7.5 and 37 degrees C. 3. The absorption process was negligible below 25 degrees C and had an optimum at 40 degrees C; a pH optimum at 7.5 was observed. 4. The absorption of tetracycline was strongly inhibited by EDTA and ATP; ADP inhibited less strongly and AMP had no effect. 5. There was no significant difference in the rates or extent of uptake of tetracycline by membranes prepared from tetracycline-sensitive and tetracycline-resistant, R-factor-bearing E. coli. 相似文献
18.
Mutant strains of Escherichia coli K-12 were shown to be impaired in their ability to assimilate glycolate-2-(14)C. One strain (Glc-103) has lost the ability to oxidize glycolate; another strain (Glc-102) was relatively impermeable to the compound. A third strain (Glc-104) had undergone a similar loss in permeability, and, in addition, was deranged in the synthesis of either glyoxylate reductase or malate synthase G. 相似文献
19.
Uptake of exogenous biotin by two Escherichia coli biotin prototroph strains, K-12 and Crookes, appeared to involve incorporation at a fixed number of binding sites located at the cell membrane. Incorporation was characterized as a binding process specific for biotin, not requiring energy, and stimulated by acidic pH. Constant saturation quantities of exogenous biotin were incorporated by these cells, and the amounts, which were titrated, depended on whether the cells were resting or dividing. Resting cells incorporated exogenous biotin amounting to 2% of their total intracellular biotin content. Fifty percent of the exogenous biotin was incorporated into their free biotin fraction, and 50% was incorporated into their bound biotin fraction. On the other hand, dividing cells incorporated exogenous biotin into all of their intracellular sites, 88% going into the intracellular-bound biotin fraction, and 12% going into the free biotin fraction. Calculations suggested that each cell contained approximately 3,000 binding sites for biotin. It was postulated that biotin incorporation sites might have been components of acetyl coenzyme A carboxylase located at or near the membrane. 相似文献
20.
The antibiotic albomycin is transported into cells of Escherichia coli K-12 by the same uptake system as the iron-supplying ferrichrome complex. The iron-complexing hydroxamate moieties of albomycin and ferrichrome are structurally similar. During the phase of rapid iron uptake the chelators were not found in the cells. In order to understand the antibiotic activity of albomycin, it was labeled in the hydroxamate with tritium and in the presumed antibiotically active area with radioactive sulfur. While the tritium label was not retained by the cells, part of the sulfur label was taken up and concentrated 500-fold within the cell. The sulfur was not incorporated into proteins or nucleic acids since it was recovered as a low molecular weight component. Gel filtration on Bio-Gel P-2 revealed one tritium-labeled and two sulfur-labeled cleavage products in the incubation medium. We conclude that albomycin is actively transported via its ferrichrome-like portion into the cells and that the growth-inhibitory moiety is released by hydrolysis intracellularly and remains there. 相似文献