首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cartilage-derived growth factors, enhance proteoglycan synthesis in cultured chick-embryo chondrocytes, and have almost no effect on cell proliferation. Addition of cartilage derived growth factors to cartilage cells loaded with the fluorescent Ca2+ indicator quin 2, caused a rapid, concentration dependent decrease in cytoplasmic free Ca2+. This decrease persisted also in Ca2+-free medium, indicating that it is not mediated by a decrease in the passive permeability of cell membrane to Ca2+. Addition of the Ca2+ ionophore A23187, with or without cartilage derived factors, caused an increase in cytoplasmic free Ca2+ together with inhibition of proteoglycan synthesis and enhanced cell proliferation. The results may indicate that whereas cell proliferation in chondrocytes is signaled by an increase in cytoplasmic Ca2+ ([Ca2+]in), proteoglycan synthesis is signaled by a decrease in [Ca2+]in. The data lead to suggesting a mechanism for antagonistic regulation of cell proliferation and the expression of the differentiated state.  相似文献   

2.
《The Journal of cell biology》1984,99(3):1167-1172
We have developed an accurate and practical method for measuring intracellular Ca2+ concentration [( Ca2+]i) in single cells in monolayer culture using the fluorescent Ca2+-binding dye quin2. Quin2 was loaded into cells as a membrane-permeant ester which is hydrolyzed in the cytoplasm to the impermeant free acid, which is the indicator form (Tsien, R.Y., T. Pozzan, and T.J. Rink, 1982, J. Cell Biol., 94:325-334). The method involves the measurement of fluorescence at 340- nm excitation (I340), where dye fluorescence is dependent on Ca2+, and at 360-nm excitation (I360), where dye fluorescence is independent of Ca2+. The ratio of these two values (I340/I360) is thus related to the concentration of Ca2+ but independent of dye concentration and can be used as a measure of [Ca2+]. To test the ratio method in the microscope, we measured [Ca2+]i in GH3 cells in monolayer culture. We found a resting [Ca2+]i of 44 +/- 28 nM (mean +/- SD, n = 34), as compared with a suspension value (Gershengorn, M., and C. Thaw, 1983, Endocrinology, 113:1522-1524) of 118 +/- 18 nM. We also measured [Ca2+]i during stimulation of the cells with thyrotropin-releasing hormone (TRH) and found a 2.4-fold increase above resting levels within 20 s, a trough at 73% of resting at 90-100 s, and a peak slightly above resting at 3 min. Depolarization of the plasma membrane with KCl produced a sustained increase in [Ca2+]i. All of these data are in good agreement with the results of Gershengorn and Thaw on suspension cultures. When measuring both resting [Ca2+]i and the effects of TRH and KCl on small groups of cells, we found some variation among experiments. Using an image intensifier-video camera, we videotaped cells during TRH stimulation. Digital image analysis of these pictures demonstrated that there was a large variation in responsiveness from cell to cell. The microscope ratio method offers the possibility of resolving regions of differing [Ca2+] within the cytoplasm.  相似文献   

3.
The effects of platelet-derived growth factor (PDGF) on the intracellular free Ca2+ concentration [( Ca2+]i) in chondrocytes were studied with a fluorescent Ca2+ indicator, fura 2, and compared with the effects of PDGF on mitogenesis and proteoglycan synthesis. PDGF evoked phasic and then tonic increase in [Ca2+]i dose-dependently in quiescent cultures of chondrocytes, and it also stimulated both DNA and proteoglycan syntheses dose-dependently similar to somatomedins. Suramin, which inhibits the interaction of PDGF with its receptors, caused dose-dependent inhibition of both the PDGF-evoked increase in [Ca2+]i and stimulation of DNA synthesis by PDGF. However, suramin rather enhanced the proteoglycan synthesis induced by PDGF without affecting the basal level of proteoglycan synthesis directly. These results suggest that [Ca2+]i may be an important signal for the action of PDGF on cell proliferation in chondrocytes, and that the initial signal for proteoglycan synthesis is different from that for DNA synthesis induced by PDGF after the activation of PDGF receptor.  相似文献   

4.
In general, calcium has been believed to control a variety of cellular processes as a signal transducer, with a high degree of spatial and temporal precision. For the determination of intracellular free-calcium concentrations [( Ca2+]i), the highly selective Ca2+ indicators, quin2/AM and fura2/AM, have been widely used in many mammalian and plant cells. However, intact cells of the cellular slime mold Dictyostelium discoideum Ax-2 are generally impermeable to externally added drugs, thus resulting in a failure to determine [Ca2+]i. Introduction of quin2/AM and fura2/AM by electroporation allowed us to measure [Ca2+]i in D. discoideum cells. The fluorescence images of fura2-loaded single cells showed that resting [Ca2+]i in vegetative and aggregation-competent cells is around 50 nM. Caffeine (10 mM) gave a transient increase in [Ca2+]i, which illustrated a normal responsive ability of electroporated cells to the externally added stimulus. Application of the chemoattractant, cAMP (20 nM), to aggregation-competent cells induced a rapid increase in [Ca2+]i within 1-2 s, and the [Ca2+]i level increased to about four-fold higher than the resting [Ca2+]i within 30 s of chemotactic stimulation. This was followed by a gradual decrease of [Ca2+]i to the basal level. These results strongly suggest that [Ca2+]i is a primary messenger in signal transduction, particularly during the chemotactic response of Dictyostelium cells.  相似文献   

5.
We have examined whether melanin affects Ca2+ homeostasis in cultured normal human melanocytes. Intracellular Ca2+ concentrations ([Ca2+]i), were measured in four Caucasian and in three Negroid melanocyte cultures. Under resting conditions [Ca2+]i was around 100 nM in all cultures, but differences between cells within cultures were observed. All cultures responded to endothelin-1 (ET-1) with increases in [Ca2+]i and there were no differences between Caucasian and Negroid cultures. However, large differences in responses between cells within cultures were observed, indicating that melanocyte cultures are very heterogeneous. The addition of 2.5 mM CaCl2 to melanocytes kept in Ca2+-free medium resulted in rapid and transient increases in [Ca2+]i of up to 1500 nM. These increases were on average more than two times smaller in melanocyte cultures established from Negroid donors compared with Caucasian cultures. In addition, well melanized Caucasian melanocytes, cultured in the presence of 400 microM tyrosine and 10 mM NH4Cl, showed a reduced increase in cytoplasmic Ca2+ concentration upon the addition of extracellular Ca2+. The difference in maintaining Ca2+ homeostasis between poorly and well melanized melanocytes may be the result of the clearance of cytoplasmic Ca2+ into melanosomes and the greater capacity for this in the more pigmented melanocytes.  相似文献   

6.
The relationship between apoptosis and resting intracellular free calcium ([Ca2+]i) was studied in serum-free cultures of granulosa cell sheets isolated from preovulatory quail follicles. Apoptosis was detected by acridine orange, in situ end-labeling of fragmented DNA and electron microscopy. [Ca2+]i was measured using fura-2. [Ca2+]i averaged 525 mM in freshly isolated sheets. In 24 h cultures no apoptosis was detected but [Ca2+]i became very dispersed, 20% of the sheets showing values above 1000 nM. At 48 h, apoptosis was obvious and [Ca2+]i remained dispersed. At 72 h, apoptosis and also the fraction of sheets with high [Ca2+]i were at their maximum. At 96 h apoptosis was subsiding and [Ca2+]i normalized. FSH depressed apoptosis and [Ca2+]i in the 72 h cultures. We conclude that at 24 h apoptosis is initiated at high [Ca2+]i foci. At later stages apoptosis is associated with high [Ca2+]i, but it is not clear whether this is cause or consequence.  相似文献   

7.
Regulation of cytosolic Ca2+ in clonal human muscle cell cultures   总被引:4,自引:0,他引:4  
Human muscle cells were grown in culture and clonally selected for fusion potential. The concentration of cytoplasmic ionized calcium, [Ca2+]i, was measured in monolayers of fused myotubes using the Ca2+ indicator indo-1. The contributions of independent routes of Ca2+ influx and efflux to/from the cytoplasm on [Ca2+]i were investigated. The resting [Ca2+]i was 170-190 nM in different cell clones. Acetylcholine increased [Ca2+]i by about 2-fold in the presence of absence of extracellular Ca2+. Cell depolarization by K+ elevated [Ca2+]i about 3-fold, and this increase was largely dependent on extracellular Ca2+. Replacing Na+ by N-methylglucammonium+ raised [Ca2+]i greater than 5-fold, and 50% of this increase was dependent on extracellular Ca2+. All these increases in [Ca2+]i were transient, returning to basal [Ca2+]i within 2 min. It is concluded that cells in culture [Ca2+]i can be elevated transiently by acetylcholine through Ca2+ release from intracellular stores, and by K through Ca2+ influx. The return to basal [Ca2+]i is due to Na+/Ca2+ exchange and Ca2+-ATPase activity.  相似文献   

8.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

9.
Dose-response relationships for raised cytoplasmic free calcium concentration, [Ca2+]i, and shape change were measured simultaneously in quin2-loaded human platelets. With the calcium ionophore ionomycin the threshold [Ca2+]i for shape change was 300 nM with a maximal response at 800 nM. With 1 mM external Ca2+ the U44069 concentrations required to stimulate half-maximal shape change and an increase in [Ca2+]i were 2 and 41 nM, respectively. For PAF these values were 8.7 and 164 pg/ml, respectively. Low concentrations of U44069 and PAF evoked substantial shape change without any rise in [Ca2+]i. In the absence of external Ca2+, U44069 stimulated half-maximal shape change at 2 nM, and half-maximal elevation of [Ca2+]i at 69 nM: here, increased [Ca2+]i never reached the threshold [Ca2+]i for shape-change derived with ionomycin. These results suggest that some transduction mechanism other than elevated [Ca2+]i, as yet unidentified, can cause shape change.  相似文献   

10.
The free cytosolic Ca2+ concentration ([Ca2+]i) of cultured cerebral cortex neurons was determined using a fluorescent Ca2+ chelator (Fluo-3) after exposure of the neurons to glutamate. Mature neurons (8 days in culture) responded within 45 s to 100 microM glutamate by an increase in [Ca2+]i from 75 to 340 nM, an increase that during the following 6 min of exposure reached 400 nM. This increase in [Ca2+]i could not be reversed by removal of glutamate. In the absence of extracellular CaCl2, only part of the initial, rapid, glutamate-induced increase in [Ca2+]i was observed in these neurons. In contrast to these findings, neurons cultured for only 2 days (immature neurons) exhibited only a small (from 75 to 173 nM) increase in [Ca2+]i after exposure to 100 microM glutamate, and this rapid increase in [Ca2+]i tended to decline on prolonged exposure to glutamate. Moreover, after removal of glutamate, the increase in [Ca2+]i was fully reversible. Pharmacological characterization of the response to glutamate in mature neurons showed that the N-methyl-D-aspartate (NMDA) receptor antagonists phencyclidine and D-2-amino-5-phosphonovalerate phosphonovalerate blocked 75 and 90%, respectively, of the response, whereas the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione had little effect.  相似文献   

11.
Angiotensin II (Ang II) increases intracellular calcium concentration ([Ca2+]i) in both normal and cancerous human breast cells in primary culture. Maximal [Ca2+]i increase is obtained using 100nM Ang II in both cell types; in cancerous breast cells, [Ca2+]i increase (delta[Ca2+]i) is 135+/-10nM, while in normal breast cells it reaches 65+/-5 nM (P<0.0001). In both cell types, Ang II evokes a Ca2+ transient peak mediated by thapsigargin (TG) sensitive stores; neither Ca2+ entry through L-type membrane channels or capacitative Ca2+ entry are involved. Type I Ang II receptor subtype (AT1) mediates Ang II-dependent [Ca2+]i increase, since losartan, an AT1 inhibitor, blunted [Ca2+]i increase induced by Ang II in a dose-dependent manner, while CGP 4221A, an AT2 inhibitor, does not. Phospholipase C (PLC) is involved in this signaling mechanism, as U73122, a PLC inhibitor, decreases Ang II-dependent [Ca2+]i transient peak in a dose-dependent mode.Thus, the present study provides new information about Ca2+ signaling pathways mediated through AT1 in breast cells in which no data were yet available.  相似文献   

12.
This study was designed to examine the role of changes in cytoplasmic free calcium concentration ([Ca2+]i) during the response to alpha 1-adrenergic agonists in cultured renal proximal tubular cells. Experiments were carried out on primary cultures of canine proximal tubular cells grown in defined culture medium on a solid support, on collagen-coated polycarbonate membranes, or on collagen-coated glass coverslips. Quin-2 and fura-2 were used to monitor [Ca2+]i. The basal level of [Ca2+]i was 101 nM, as measured with quin-2, and 122 nM, as determined using fura-2. Fluorescence flow cytometry revealed that about 85% of the population of proximal tubular cells responded to phenylephrine with an increase in [Ca2+]i. Phenylephrine (10(-5) M) caused an immediate actual increase in [Ca2+]i by 18 and 24%, as determined with quin-2 and fura-2, respectively, with the peak increase in [Ca2+]i averaging 22% and 44% over the basal level (180-300 sec). This effect did not require extracellular calcium. The effect of phenylephrine was abolished by prazosin and verapamil. Fluorescence microscopy of quin-2 or fura-2 loaded cells revealed punctate areas of fluorescence within the cytoplasm suggesting vesicular uptake of the dyes. Pinocytotic entrapment of the dyes was demonstrated by the transfer of cell-impermeant fura-2 across tubular cell monolayers mounted in Ussing chambers. The transfer of the dye was similar to that of a marker of fluid-phase pinocytosis, Lucifer Yellow (LY). This pinocytotic entrapment of Ca2+-indicators would lead to underestimation of the actual calcium transients. Microfluorometric study of single proximal tubular cells "scrape-loaded" with fura-2 revealed a four-fold increase in [Ca2+]i concentration following stimulation with phenylephrine.  相似文献   

13.
Long-lasting and rapid calcium changes during mitosis   总被引:11,自引:7,他引:4       下载免费PDF全文
A more complete understanding of calcium's role in cell division requires knowledge of the timing, magnitude, and duration of changes in cytoplasmic-free calcium, [Ca2+]i, associated with specific mitotic events. To define the temporal relationship of changes in [Ca2+]i to cellular and chromosomal movements, we have measured [Ca2+]i every 6-7 s in single-dividing Pt K2 cells using fura-2 and microspectrophotometry, coupling each calcium measurement with a bright-field observation. In the 12 min before discernable chromosome some separation, 90% of metaphase cells show at least one transient of increased [Ca2+]i, 72% show their last transient within 5 min, and a peak of activity is seen at 3 min before chromosome separation. The mean [Ca2+]i of the metaphase transients is 148 +/- 31 nM (61 transients in 35 cells) with an average duration of 21 +/- 14 s. The timing of these increases makes it unlikely that these transient increases in [Ca2+]i are acting directly to trigger the start of anaphase. However, it is possible that a transient rise in calcium during late metaphase is part of a more complex progression to anaphase. In addition to these transient changes, a gradual increase in [Ca2+]i was observed starting in late anaphase. Within the 2 min surrounding cytokinesis onset, 82% of cells show a transient increase in [Ca2+]i to 171 +/- 48 nM (53 transients in 32 cells). The close temporal correlation of these changes with cleavage is consistent with a more direct role for calcium in this event, possibly by activating the contractile system. To assess the specificity of these changes to the mitotic cycle, we examined calcium changes in interphase cells. Two-thirds of interphase cells show no transient increases in calcium with a mean [Ca2+]i of 100 +/- 18 nM (n = 12). However, one-third demonstrate dramatic and repeated transient increases in [Ca2+]i. The mean peak [Ca2+]i of these transients is 389 +/- 70 nM with an average duration of 77 s. The necessity of any of these transient changes in calcium for the completion of mitotic or interphase activities remains under investigation.  相似文献   

14.
P Schaap  T Nebl    P R Fisher 《The EMBO journal》1996,15(19):5177-5183
During Dictyostelium stalk cell differentiation, cells vacuolate, synthesize a cellulose cell wall and die. This process of programmed cell death is accompanied by expression of the prestalk gene ecmB and induced by the differentiation inducing factor DIF. Using cell lines expressing the recombinant Ca2+-sensitive photoprotein apoaequorin, we found that 100 nM DIF increases cytosolic Ca2+ ([Ca2+]i) levels from approximately 50 to 150 nM over a period of 8 h. The Ca2+-ATPase inhibitor 2,5-di(tert-butyl)-1,4-hydroquinone (BHQ) induced a similar increase in [Ca2+]i levels and induced expression of the prestalk gene ecmB to the same level as DIF. The [Ca2+]i increases induced by DIF and BHQ showed similar kinetics and preceded ecmB gene expression by approximately 1-2 h. The Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N,N,N'N'-tetra-acetic acid (BAPTA) efficiently inhibited the BHQ-induced [Ca2+]i increase and blocked DIF-induced expression of the ecmB gene. These data indicate that the effects of DIF on stalk gene expression are mediated by a sustained increase in [Ca2-]i. Sustained [Ca2+]i elevation mediates many forms of programmed cell death in vertebrates. The Dictyostelium system may be the earliest example of how this mechanism developed during early eukaryote evolution.  相似文献   

15.
The regulation of [Ca2+]i in rat pinealocytes was studied using the fluorescent indicator quin2. Pinealocyte resting [Ca2+]i was approximately 100 nM; this rapidly decreased in low Ca2+ medium (approximately 10 microM), indicating there was a high turnover of [Ca2+]i in these cells. Norepinephrine (NE, 10(-6) M) increased [Ca2+]i to approximately 350 nM within 1 min; [Ca2+]i then remained elevated for 30 min. The relative potency of adrenergic agonists was NE greater than phenylephrine much greater than isoproterenol. Phentolamine (10(-6) M) and prazosin (10(-8) M) blocked the effects of adrenergic agonists; in contrast, propranolol (10(-6) M) or yohimbine (10(-6) M) had little or no effect. These observations indicate NE acts via alpha 1-adrenoceptors to elevate [Ca2+]i. The [Ca2+]i response to NE did not occur when [Ca2+]e was reduced to approximately 10 microM by adding EGTA 5s before NE, indicating an increase in net Ca2+ influx is involved rather than mobilization of Ca2+ from intracellular stores. The effect of NE was not blocked by nifedipine (10(-6) M), which did block a K+-induced increase in [Ca2+]i, presumably involving voltage-sensitive channels. Ouabain (10(-5) M) caused a gradual increase in [Ca2+]i; this increase was not blocked by nifedipine. Together these data indicate that pinealocyte [Ca2+]i may be influenced by mechanisms regulated by alpha 1-adrenoceptors, voltage-dependent Ca2+ channels, and perhaps a Na+/Ca2+ exchange mechanism stimulated by ouabain. These studies indicate that the pinealocyte is an interesting model to use to study the adrenergic regulation of [Ca2+]i because of the rapid and prolonged changes in [Ca2+]i produced by alpha 1-adrenoceptor activation.  相似文献   

16.
The initial signal for thyroid cell proliferation is unknown. This is the first report to show that epidermal growth factor (EGF) produces inositol phosphates and increases cytoplasmic free calcium ([Ca2+]i) in the thyroid gland. In cultured porcine thyroid cells, 10 nM EGF produces a breakdown of phosphatidylinositol and stimulates inositol phosphate production. Ten nM EGF increases [Ca2+]i, measured using fura-2, a fluorescent Ca2+ indicator; the EGF-induced [Ca2+]i response occurs immediately, reaches a maximum within several seconds, and then slowly declines. EGF stimulates production of inositol phosphates, which seem to increase [Ca2+]i. Inositol phosphate production and an increase in [Ca2+]i after EGF-stimulation may function as an initial signal for thyroid cell proliferation.  相似文献   

17.
The inflammatory peptide bradykinin stimulated a rapid and transient increase in cytoplasmic [Ca2+] in primary pig chondrocytes, as measured by the fluorescent indicator dye Fura-2. This increase occurred in the absence of extracellular Ca2+, indicating a mobilization from intracellular stores. The elevation in intracellular [Ca2+] was mediated by authentic bradykinin receptors, since it was blocked by the specific bradykinin antagonist [beta-(2-thienyl)-L-Ala5,8,D-Phe7]bradykinin. Activation of chondrocytes by bradykinin induced a concentration-dependent [ED50 (dose for half-maximal response) approximately 40 nM] accumulation of inositol monophosphate in the presence of LiCl and a concentration-dependent increase in production of prostaglandin E2. The generation of the secondary mediator prostaglandin E2 was a biologically relevant output response induced by bradykinin, but chondrocyte responses, such as the rate of entry into DNA synthesis, the rate and pattern of new protein synthesis and the rate of synthesis and resorption of cartilage proteoglycan, were unaltered by bradykinin treatment. Chondrocytes were also shown to be activated by two pharmacological mediators of cytosolic [Ca2+] elevation, i.e. the ionophore A23187 and thapsigargin, which both produced alterations in protein synthesis which were mimicked by bradykinin. Thus Ca2+-sensitive pathways exist which are not functionally responsive to a Ca2+-mobilizing and inositol phosphate-generating hormone, potentially indicating other routes of regulation. These results call attention to bradykinin and related peptides as another class of inflammatory mediators which may regulate physiological and pathological chondrocyte metabolism.  相似文献   

18.
Using an intracellularly trapped dye, quin 2, effects of adenosine on intracellular free calcium concentrations ([Ca2+]i) were recorded, microfluorometrically, using rat aortic medial vascular smooth muscle cells (VSMCs) in primary culture. Regardless of whether cells were at rest (in 5 mM K+), at K+-depolarization (in 55 mM K+) or at Ca2+ depletion (in Ca2+-free media), adenosine induced a rapid reduction of [Ca2+]i, following which there was a gradual increase to pre-exposure levels, in cells at rest and in the case of Ca2+ depletion. Only when the cells were depolarized (55 mM K+) did adenosine induce a new steady [Ca2+]i level, lower than the pre-exposure value. These findings indicate that decrease in [Ca2+]i by adenosine is one possible mechanism involved in the adenosine-mediated vasodilatation, and that adenosine decreases [Ca2+]i by direct extrusion, by sequestration, or by inhibiting the influx of Ca2+ into VSMCs.  相似文献   

19.
T Yada  M Kakei  H Tanaka 《Cell calcium》1992,13(1):69-76
Since it was reported that glucose stimulation initially lowers as well as subsequently raises the cytosolic free calcium concentration [( Ca2+]i) in pancreatic islet cells from hyperglycemic ob/ob mice, it has been argued whether the lowering of [Ca2+]i is physiological or artifactual. In the present study, [Ca2+]i in single pancreatic beta-cells from normal rats was measured by Fura-2 microfluorometry. Following elevation of the glucose concentration from 2.8 mM (basal) to 16.7 mM, a bimodal change in [Ca2+]i, an initial decrease and subsequent increase, was demonstrated. When the basal glucose concentration was raised to 5.6 mM, the stimulation with 16.7 mM glucose also induced the decrease in [Ca2+]i in the majority of the cells, though the amplitude of the decrease was reduced. An elevation of the glucose concentration from 2.8 to 5.6 mM induced the decrease in [Ca2+]i but not usually the increase in [Ca2+]i. Removal of extracellular Ca2+ eliminated the increase in [Ca2+]i without affecting the decrease in [Ca2+]i. Thus, the decrease and increase in [Ca2+]i were clearly dissociated under certain conditions. In contrast, mannoheptulose (an inhibitor of glucose metabolism) inhibited both the decrease and increase in [Ca2+]i. These results demonstrate that the glucose-induced bimodal change in [Ca2+]i is a physiological response of islet beta-cells, and that the decrease and increase in [Ca2+]i are generated by mutually-independent mechanisms which are operated through glucose metabolism by islet beta-cells.  相似文献   

20.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号