首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the impact of disturbance on the pattern of diversity, forest structure and regeneration of tree species in the Vindhyan dry tropical forest of India. A total of 1500 quadrats distributed over five, 3-ha permanent plots in five sites, differing in degree of disturbance, were used to enumerate and measure the tree species. A total of 65 species with 136,983 individuals were enumerated in the total 15-ha area for stems 30 cm height. The number of species and number of stems ranged from 12 to 50 and 8063–65331 per 3-ha area. The number of species and stems for trees 10 cm dbh ranged from 3 to 28 species, with a mean value of 16 species ha–1, and from 16 to 477 stems, with a mean value of 256 stems ha–1, respectively. The adult based PCA ordination indicated uniqueness of sites in terms of species composition and habitat characteristics. PCA ordination also showed uniqueness of sites in terms of seedling composition, but the seedling and adult distributions were not spatially associated. The distinct species composition at the different sites and at the two life-cycle stages on the same site is indicative of marked spatio-temporal dynamics of the dry tropical forest. The density–diameter semi-logarithmic curves ranged from a near linear to an overall concave appearance with a limited plateau in the mid-diameter ranges. The -diversity and its components decreased with increasing disturbance intensity, reflecting enhanced utilization pressure with increasing disturbance. The site-wise and species-wise regression analyses of the number of individuals in different stages of the species revealed that both the level of disturbance and the nature of species strongly affect the regeneration. In conclusion, although the forest is relatively species-poor, the differential species composition on different sites and the temporal dynamics lend a unique level of diversity to the tropical dry deciduous forest.  相似文献   

2.
Tree species richness, tree density, basal area, population structure and distribution pattern were investigated in undisturbed, mildly disturbed, moderately disturbed and highly disturbed stands of tropical wet evergreen forests of Arunachal Pradesh. The forest stands were selected based on the disturbance index (the basal area of the cut trees measured at ground level expressed as a fraction of the total basal area of all trees including felled ones): (i) undisturbed stand (0% disturbance index), (ii) mildly disturbed (20% disturbance index), (iii) moderately disturbed (40% disturbance index), and (iv) highly disturbed stand (70% disturbance index). Tree species richness varied along the disturbance gradient in different stands. The mildly disturbed stand showed the highest species richness (54 of 51 genera). Species richness was lowest (16 of 16 genera) in the highly disturbed stand. In the undisturbed stand, 47 species of 42 genera were recorded while in the moderately disturbed stand 42 species of 36 genera were found. The Shannon–Wiener diversity index for tree species ranged from 0.7 to 2.02 in all the stands. The highest tree diversity was recorded in the undisturbed stand and the lowest in the highly disturbed stand. The stands differed with respect to the tree species composition at the family and generic level. Fagaceae, Dipterocarpaceae and Clusiaceae dominated over other families and contributed 53% in the undisturbed, 51% in the mildly disturbed, 42% in the moderately disturbed and 49% in the highly disturbed forest stands to the total density of the respective stand. Stand density was highest (5452 stems ha–1) in the undisturbed stand, followed by the mildly disturbed stand (5014), intermediate (3656) in the moderately disturbed stand and lowest (338) in the highly disturbed stand. Dominance, calculated as the importance value index of different species, varied greatly across the stands. The highest stand density and species richness were represented in the medium girth class (51–110 cm) in all the stands. In the undisturbed stand, the highest density was found in the 111–140 cm girth class, while in the mildly disturbed stand the 51–80 cm girth range recorded the highest density. About 55, 68 and 52% species were found to be regenerating in the undisturbed, mildly disturbed and moderately disturbed stands, respectively. No regeneration was recorded in the highly disturbed stand. Variation in species richness, distribution pattern and regeneration potential is related to human interference and the need for forest conservation is emphasized.  相似文献   

3.
We used a highly replicated study to examine vegetation characteristics between patches of intervened forest, abandoned agroforestry systems with coffee and actively managed agroforestry systems with coffee in a tropical landscape. In all habitats, plant structural characteristics, individual abundance, species richness and composition were recorded for the three plant size classes: adult trees, saplings and seedlings. Furthermore, bird species richness and composition, and seeds dispersed by birds were recorded. Tree abundance was higher in forest habitats while saplings and seedlings were more abundant in abandoned coffee sites. Although species richness of adult trees was similar in the three habitats, species richness of saplings and seedlings was much higher in forest and abandoned coffee than in managed coffee sites. However, in spite of their relatively low species richness, managed coffee sites are an important refuge for tree species common to the almost disappeared mature forest in the area. Floristic similarity for adult trees was relatively low between land use types, but clearly higher for seedlings, indicating homogenizing processes at the landscape level. More than half of the saplings and seedling were not represented by adults in the canopy layer, suggesting the importance of seed dispersal by birds between habitats. Our results show that each of the studied ecosystems plays a unique and complementary role as seed source and as habitat for tree recovery and tree diversity.  相似文献   

4.
Human activities such as fragmentation and selective logging of forests can threaten population viability by modification of ecological and genetic processes. Using six microsatellite markers, we examined the effects of forest fragmentation and local disturbance on the genetic diversity and structure of adult trees (N = 110) and seedlings (N = 110) of Prunus africana in Kakamega Forest, western Kenya. Taking samples of adults and seedlings allowed for study of changes in genetic diversity and structure between generations. Thereby, adults reflect the pattern before and seedlings after intensive human impact. Overall, we found 105 different alleles in the six loci examined, 97 in adults and 88 in seedlings. Allelic richness and heterozygosity were significantly lower in seedlings than in adults. Inbreeding increased from adult tree to seedling populations. Genetic differentiation of adult trees was low (overall F ST = 0.032), reflecting large population sizes and extensive gene flow in the past. Genetic differentiation of seedlings was slightly higher (overall F ST = 0.044) with all of the 28 pairwise F ST-values being significantly different from zero. These results suggest that human disturbance in Kakamega Forest has significantly reduced allelic richness and heterozygosity, increased inbreeding and slightly reduced gene flow in P. africana in the past 80–100 years.  相似文献   

5.
Facilitation is an important ecological mechanism with potential applications to forest restoration. We hypothesized that different facilitation treatments, distance from the forest edge and time since initiation of the experiment would affect forest restoration on abandoned pastures. Seed and seedling abundance, species richness and composition were recorded monthly during two years under isolated trees, bird perches and in open pasture. Seed arrival and seedling establishment were measured at 10 m and 300 m from the forest edge. We sampled a total of 131,826 seeds from 115 species and 487 seedlings from 46 species. Isolated trees and bird perches increased re-establishment of forest species; however, species richness was higher under isolated trees. Overall, abundance and richness of seeds and seedlings differed between sampling years, but was unaffected by distance from the forest edge. On the other hand, species composition of seeds and seedlings differed among facilitation treatments, distance from the forest edge and between years. Seedling establishment success rate was larger in large-seeded species than medium- and small-seeded species. Our results suggest that isolated trees enhance forest re-establishment, while bird perches provide a complementary effort to restore tree abundance in abandoned pastures. However, the importance of seed arrival facilitation shifts toward establishment facilitation over time. Arriving species may vary depending on the distance from the forest edge and disperser attractors. Efforts to restore tropical forests on abandoned pastures should take into account a combination of both restoration strategies, effects of time and proximity to forest edge to maximize regeneration.  相似文献   

6.
《农业工程》2021,41(6):597-610
Understanding the regeneration potential of tree species in natural forest ecosystems is crucial to deliver suitable management practices for conservation of biodiversity. We studied the variation in structural diversity and regeneration potential of tree species in three different tropical forest types, namely: Dry Deciduous forest (DDF), Moist Deciduous forest (MDF) and Semi-evergreen forest (SEF) of Similipal Biosphere Reserve (SBR), Eastern India. Random sample plots were laid for studying the diversity and distribution pattern of tree, sapling, and seedling stages of the tree species. A total of 84 species belong to 73 genera and 35 families were recorded from the study area. The highest species richness was reported for tree (54 species) in DDF, sapling (24 species) in MDF and seedling (22 species each) in SEF and DDF. The overall density of trees with GBH (Girth at Breast Height) ≥ 10 cm was 881 individuals/ha. The regeneration potential of tree species was poor in DDF (39%) where as it was fair in SEF (43%) and MDF (49%). Most of the dominant tree species at each forest type performed good regeneration. The species such as Ehretia laevis Roxb., Bridelia retusa (L.)A.Juss., Mitragyna parviflora (Roxb.) Korth., Terminalia tomentosa Wight & Arn., Terminalia chebula Retz., Terminalia bellirica (Gaertn.) Roxb.etc. had either no regeneration or poor regeneration potential need immediate attention for conservation measures. The diversity of standing trees did not correlate with seedling or sapling diversity in all the cases but there was significant correlation among seedling and sapling diversity found in DDF (r = 0.67, p ≤ 0.05) and SEF (r = 0.83, p ≤ 0.05). Further, the diversity of tree species increased with their age (trees > saplings > seedlings) and the stem density decreased with their age (trees < saplings < seedlings) in all three forest types. The results of our study would be helpful in understanding the structural attributes, diversity and regeneration potential of different tropical forest types of India for their better conservation and management.  相似文献   

7.
Cultivation of annual crops in the initial stage of reforestation has been commonly practiced in the tropics. In recent decades, however, cultivation of such areas has been discontinued, resulting in widespread abandoned settlements. In this article we used a former forest village settlement in Kenya, which had been cleared, cultivated and then abandoned, to study how natural vegetation recovers after such disturbances. Species richness, abundance, and composition of tree seedlings, saplings, adult trees, shrubs, and herbs were recorded in different zones, from a heavily degraded zone in the center of the settlement, through less disturbed transition zones (TZs), and in the surrounding secondary forest (SF). Species richness and abundance of tree seedlings, saplings, and adult trees increased gradually from the heavily degraded zone to the SF, whereas shrub and herb richness were the same for TZs and SF and abundance was lowest in the SF. Total species richness was highest in the SF. Some pioneer tree species were highly associated with the TZs, whereas sub‐canopy tree species were associated with the SF. A group of tree species were not particularly associated with any of the four zones. Thus, these species might have good potential as restoration species. The results of our study contribute to the knowledge of natural regeneration in general, and of individual species characterizing the different stages of recovery of abandoned settlements in particular. Such information is urgently needed in designing ecologically sound management strategies for restoring abandoned forest settlements in tropical areas.  相似文献   

8.
The taungya agro‐forestry system is an under‐researched means of forest restoration that may result in high tree diversity. Within a forest reserve in Ghana, the forest core and its surrounding Teak‐ and Cedrela‐taungya on logged, cropped and burned land were mapped with ALOS satellite imagery. Native trees, seedlings and saplings were enumerated in 70 random, nested plots, equally divided between forest and taungya. The native tree regeneration was assessed by species richness (SR), Shannon‐Wiener Index (SWI), Shannon Evenness Index (SEI) and species density (SeD) for seedlings, saplings and trees separately and combined and subsequently correlated with canopy covers (CC) in taungya. As anticipated, the taungya diversity was lower than the forest diversity but higher than reported from nontaungya exotic plantations. In the forest, the diversity of native trees increased from seedlings through saplings to trees. The reverse was found in the taungya. Taungya seedling diversity was not significantly different from the forest, while the sapling and tree diversity were significantly lower. Weak correlations of CC with SR, SWI, SEI and SeD were found. Our results suggest the need for treatment to maintain the tree diversity beyond the seedling stage in the taungya.  相似文献   

9.
We investigated the recruitment of saplings (across the 2 m-heightthreshold) of six species,Picea jezoensis, Abies sachalinensis,Betula ermanii, Picea glehnii, Acer ukurunduense andSorbus commixta,in a sub-boreal forest, northern Japan. Data were collectedin a 2.48-ha plot over six growing seasons (1989–1994).We used path analysis to analyse the relationships between therecruitment rates of saplings and the stand structural attributessuch as mother tree abundance, stand crowdedness, stand stratification,Sasabamboo density on the forest floor, and fallen log abundance.The combination of stand structural attributes affecting recruitmentrates of the six sub-boreal forest tree species differed markedlyamong the species and corresponded to species composition. Itis suggested that the size-structure dynamics of adult treesof the sub-boreal forest are regulated largely by differentregeneration processes among the species and only slightly byinterspecific competition between adult trees because interspecificcompetition between adult trees was not evident. The dynamicsof species coexistence of the sub-boreal forest should be describedas a process combining the diversity of recruitment processesof saplings of the component species and the diversity of interspecificcompetition between adult trees. We propose the boundary conditionhypothesis for species coexistence in the sub-boreal forest,that the persistence of each component species is ascribed largelyto the different recruitment processes of saplings (boundaryconditions for adult tree growth dynamics) and only a littleto interspecific adult tree competition. Climax forest; safe site; regeneration niche; mode of competition; species diversity  相似文献   

10.
Anthropogenic habitat disturbance can have profound effects on multiple components of forest biotas including pollinator assemblages. We assessed the effect of small-scale disturbance on local richness, abundance, diversity and evenness of insect pollinator fauna; and how habitat disturbance affected species turnover across the landscape and overall diversity along a precipitation gradient in NW Patagonia (Argentina). We evaluated the effect of disturbance on overall pollinator fauna and then separately for bees (i.e. Apoidea) and non-bee pollinators. Locally, disturbed habitats had significantly higher pollinator species richness and abundances than undisturbed habitats for the whole pollinator assemblage, but not for bees or non-bees separately. However, significant differences in species richness between habitats vanished after accounting for differences in abundance between habitat types. At a local scale Shannon–Weaver diversity and evenness did not vary with disturbance. A β diversity index indicated that, across forest types, species turnover was lower between disturbed habitats than between undisturbed habitats. In addition, rarefaction curves showed that disturbed habitats as a whole accumulated fewer species than undisturbed habitats at equivalent sample sizes. We concluded that small patches of disturbed habitat have a negligible effect on local pollinator diversity; however, habitat disturbance reduced β diversity through a homogenization of the pollinator fauna (in particular of bees) across the landscape.  相似文献   

11.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

12.
The diversity of tropical dry forests is poorly described and their regeneration ecology not well understood, however they are under severe threat of conversion and degradation. The Hellshire Hills constitute a dry limestone forest reserve on the south coast of Jamaica that is of high conservation value. In order to describe the structure and composition of this forest and assess the extent to which the population structures of its tree species do characterize their regeneration ecologies, pre-disturbance structure, floristics and seedling populations were compared with post-disturbance species responses in twelve 15 m × 15 m permanent sample plots which were laid out in a blocked design in April 1998, giving a total sample area of 0.27 ha. These plots were subjected to disturbance in April 1999 (cutting) with each of four blocks being assigned with two randomly allocated treatment plots (partially and clear cut) and one control plot (uncut). A total of 1278 trees (≥2 cm DBH) and 7863 seedlings and saplings (0–2 mm and 2–20 mm root collar diameter (RCD) respectively), comprising 60 and 52 species, respectively, were sampled in the plots prior to disturbance. The species-area curve for trees reached a maximum at 0.20 ha, and abundance was widely distributed amongst the species (26 had importance values greater than 1%); four species were notably codominant (with importance values between 7 and 8%). The forest stand structure had a reverse J-shaped curve for tree and for seedling/sapling size-class distributions, which indicated that the forest as a whole was probably regenerating adequately. From an analysis based on adult and sapling size-class distributions (SCDs), 21 species with 15 or more individuals were classified into 3 groups. Many of the species (15 of the 21), had flat adult SCDs that deviate from the whole-community reverse J-shaped SCD. However, sapling SCDs for 6 of the 15 species were strongly positive indicating the potential for their populations to be sustained by recruitment from the saplings present. No general association was found between these SCD species groupings and the actual ability of the species to recover from disturbance. Analysis of post-disturbance response revealed that for only 9 of the 21 species did adult SCDs provide adequate prediction, but for an additional 6 of the species information on sapling SCDs improved the accuracy of prediction if the ‘release’ of saplings or smaller individuals predominated recovery. However in this forest, recovery following disturbance which left stem and roots in place is predominantly by coppice regrowth, and there were no significant correlations found between adult SCDs and the species’ ability to coppice.  相似文献   

13.
Abstract. The growth dynamics and mode of competition between adult trees ≥ 4 cm in DBH (stem diameter at breast height 1.3 m) of eight abundant species occupying ca. 90 % of the total basal area were investigated in a 4-ha study plot (200 m × 200 m) of a cool-temperate, old-growth forest on Mount Daisen, southwestern Japan. In the study plot, 30 tree species with individuals ≥ 4.0 cm DBH co-occurred. A bimodal DBH distribution showing upper and lower-canopy layers was found for the most dominant and largest species, Fagus crenata (ca. 78 % of the total basal area), whilst other tree species showed unimodal DBH distributions corresponding mostly to the lower-canopy layer. We developed a model for individual growth incorporating both intra and interspecific competition and the degree of competitive asymmetry. Onesided interspecific competition was detected only from Fagus crenata (upper-canopy species) to Acer japonicum and Acanthopanax sciadophylloides (lower-canopy species) on the scale of the 4-ha study plot. Only Acanthopanax sciadophylloides showed symmetric intraspecific competition. However, a positive (non-competitive) interspecific relationship between adult trees prevailed over a competitive relationship; for example, individual DBH growth rate of Fagus crenata (especially lower-canopy trees) was correlated with the abundance of Acer mono. The positive relationship represented a group of species with similar habitat preference [soil type (mature or immature) caused by landslide disturbance and the presence/absence of Sasa dwarf bamboos in the understorey], where tree densities were not so high as to bring about competition. Competitive interactions between adult trees ≥ 4 cm in DBH occurred only locally between a few specific species and were suggested to be almost irrelevant to the variation in species coexistence on the 4-ha scale of cool-temperate forest. Rather, the coexistence of 30 tree species (species diversity) on this large scale was suggested to be governed by the regeneration pattern of each component species (habitat preference, seedling establishment, sapling competition) with respect to landslide disturbance.  相似文献   

14.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

15.
We compared the functional type composition of trees ≥10 cm dbh in eight secondary forest monitoring plots with logged and unlogged mature forest plots in lowland wet forests of Northeastern Costa Rica. Five plant functional types were delimited based on diameter growth rates and canopy height of 293 tree species. Mature forests had significantly higher relative abundance of understory trees and slow-growing canopy/emergent trees, but lower relative abundance of fast-growing canopy/emergent trees than secondary forests. Fast-growing subcanopy and canopy trees reached peak densities early in succession. Density of fast-growing canopy/emergent trees increased during the first 20 yr of succession, whereas basal area continued to increase beyond 40 yr. We also assigned canopy tree species to one of three colonization groups, based on the presence of seedlings, saplings, and trees in four secondary forest plots. Among 93 species evaluated, 68 percent were classified as regenerating pioneers (both trees and regeneration present), whereas only 6 percent were classified as nonregenerating pioneers (trees only) and 26 percent as forest colonizers (regeneration only). Slow-growing trees composed 72 percent of the seedling and sapling regeneration for forest colonizers, whereas fast-growing trees composed 63 percent of the seedlings and saplings of regenerating pioneers. Tree stature and growth rates capture much of the functional variation that appears to drive successional dynamics. Results further suggest strong linkages between functional types defined based on adult height and growth rates of large trees and abundance of seedling and sapling regeneration during secondary succession.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp  相似文献   

16.
The degradation of natural forests to modified forests threatens subtropical and tropical biodiversity worldwide. Yet, species responses to forest modification vary considerably. Furthermore, effects of forest modification can differ, whether with respect to diversity components (taxonomic or phylogenetic) or to local (α-diversity) and regional (β-diversity) spatial scales. This real-world complexity has so far hampered our understanding of subtropical and tropical biodiversity patterns in human-modified forest landscapes. In a subtropical South African forest landscape, we studied the responses of three successive plant life stages (adult trees, saplings, seedlings) and of birds to five different types of forest modification distinguished by the degree of within-forest disturbance and forest loss. Responses of the two taxa differed markedly. Thus, the taxonomic α-diversity of birds was negatively correlated with the diversity of all plant life stages and, contrary to plant diversity, increased with forest disturbance. Conversely, forest disturbance reduced the phylogenetic α-diversity of all plant life stages but not that of birds. Forest loss neither affected taxonomic nor phylogenetic diversity of any taxon. On the regional scale, taxonomic but not phylogenetic β-diversity of both taxa was well predicted by variation in forest disturbance and forest loss. In contrast to adult trees, the phylogenetic diversity of saplings and seedlings showed signs of contemporary environmental filtering. In conclusion, forest modification in this subtropical landscape strongly shaped both local and regional biodiversity but with contrasting outcomes. Phylogenetic diversity of plants may be more threatened than that of mobile species such as birds. The reduced phylogenetic diversity of saplings and seedlings suggests losses in biodiversity that are not visible in adult trees, potentially indicating time-lags and contemporary shifts in forest regeneration. The different responses of taxonomic and phylogenetic diversity to forest modifications imply that biodiversity conservation in this subtropical landscape requires the preservation of natural and modified forests.  相似文献   

17.
Eight forest types varying in disturbance frequencies were identified along an elevational gradient in Uttaranchal, central Himalaya. Low elevation forests were close to human habitation and had high disturbance frequency, while high elevation forests were situated far from the human habitation and had low disturbance. The dominant tree species at low elevation were Pinus roxburghii and Quercus leucotrichophora, while Q. floribunda and Q. semecarpifolia dominated the high elevation forests. Pyracantha crenulata was the shrub present in all the forests except in Q. semecarpifolia forest and Anaphalis contorta, a herb species, was present in all the forests. Disturbance decreased the dominance of single species and increased the plant biodiversity by mixing species of different successional status. Species richness and diversity for all the vegetation layers were higher in low elevation–high disturbance forests. Mean tree density decreased from high to moderate and increased in low disturbance. The shrub density decreased from high to low disturbance while the reverse occured for herbs. High proportion of early successional species in disturbed forests indicated that disturbance induces succession. The mean number of young individuals increasing from high to low disturbance indicates that disturbance adversely affects regeneration. But, however, the high number of young individuals of Coriaria nepalensis, a small non-leguminous nitrogen fixing tree, in disturbed forests shows that the forest is regenerating. This species could be helpful in the re-establishment of original vegetation through triggering the regeneration of these forests. High elevation–low disturbed forests separated from low elevation–high disturbed forests. Forest type and elevation may have more influence on tree richness while shrub and herb richness may be more sensitive to disturbance and forest types.  相似文献   

18.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

19.
Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late‐successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.  相似文献   

20.
Reduced-impact logging (RIL) is known to be beneficial in biodiversity conservation, but its effects on tree diversity remain unknown. Pattern of tree diversity following disturbance usually varies with spatial scale of sampling (i.e., plot size). We examined the impacts of RIL on species richness and community composition of tree species at different spatial scales, and the scale (plot size) dependency of the two metrics; species richness versus community similarity. One 2-ha and three to four 0.2-ha plots were established in each of primary, RIL, and conventionally logged (CL) forest in Sabah, Malaysia. Species richness (the number of species per unit number of stems) was higher in the RIL than in the CL forest at both scales. The relationship between species richness and logging intensity varied with plot size. Species richness was greater in the RIL than in the primary forest at the 2-ha scale, while it was similar between the two forests at 0.2-ha scale. Similarly, species richness in the CL forest demonstrated a greater value at the 2-ha scale than at the 0.2-ha scale. Greater species richness in the two logged forests at the 2-ha scale is attributable to a greater probability of encountering the species-rich, small patches that are distributed heterogeneously. Community composition of the RIL forest more resembled that of the primary forest than that of the CL forest, regardless of plot size. Accordingly, species richness is a scale-dependent metric, while community similarity is a more robust metric to indicate the response of tree assemblage to anthropogenic disturbance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号