首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temperature-Sensitive Osmotic Remedial Mutants of Escherichia coli   总被引:10,自引:4,他引:6       下载免费PDF全文
A collection of temperature-sensitive mutants of Escherichia coli K-12 was examined for ability to grow at the restrictive temperature when the osmotic pressure of the medium was increased. Five of the fourteen mutants were found to be osmotic remedial. Four strains containing temperature-sensitive, osmotic-remedial mutations affecting aminoacyl-transfer ribonucleic acid synthetases were found to have altered permeability characteristics which may be attributable to changes in the lipopolysaccharide layer of the cell envelope at restrictive temperatures.  相似文献   

2.
Summary Temperature-sensitive mutants of Tetrahymena pyriformis which had previously been selected for their inability to grow at 38°C but which grew normally (or near normally) at 30°C were characterized with respect to their patterns of RNA and protein accumulation at both the permissive and nonpermissive temperatures. Out of 116 such mutants, the majority (72) acted like wild type for these accumulations during a 3 h labelling period although some of them stopped dividing during this time. The remainder exhibited a variety of altered phenotypes for the rate, extent, and timing of RNA and/or protein accumulation. Those mutants which exhibited selective inhibition of RNA accumulation, and were thus potential ribosomal RNA (rRNA) mutants, were further characterized by examining patterns of protein and RNA synthesis in cells starved at the permissive temperature, but re-fed at the permissive and non-permissive temperatures. At least five different types of mutants as defined by patterns of protein and RNA synthesis in refed cells were identified. Direct analysis of the RNA synthesized in cells from 2 of these types of mutants showed that in 5 out of 6 cases rRNA synthesis and/or processing was inhibited within 30 min after shifting to the non-permissive temperature. The other mutant examined was found to show a delayed inhibition of rRNA synthesis.  相似文献   

3.
The vaccinia virus D5 gene encodes a 90 kDa early protein that is essential for viral DNA replication. In this report we map and explore the phenotypes of the temperature sensitive mutants bearing lesions in this gene:ts17,ts24,ts69, (WR strain) andts6389 (IHD strain). Viral DNA synthesis was virtually undetectable during non-permissive infections performed withts17, and incorporation of3H-thymidine ceased rapidly when cultures were shifted to the non-permissive temperature in the midst of replication. The D5 protein may therefore be involved in DNA synthesis at the replication fork. The lesions of the four mutants were localized within the D5orf by marker rescue, and the single nucleotide changes responsible for thets phenotype of the three WR mutants were identified. Unexpectedly, the three alleles with N-terminal mutations were impaired in marker rescue when homologous recombination with small (<2 kb), intragenic DNA fragments at 39.5°C was required. This deficiency was not due to degradation of transfected DNA under non-permissive conditions. Efficient marker rescue could be restored by incubation at the permissive temperature for a brief period after transfection, suggesting a requirement for functional D5 in genome/plasmid recombination. Marker rescue under non-permissive conditions could alternatively be restored by co-transfection of unlinked but contiguous DNA sequences.  相似文献   

4.
The vaccinia virus D5 gene encodes a 90 kDa early protein that is essential for viral DNA replication. In this report we map and explore the phenotypes of the temperature sensitive mutants bearing lesions in this gene:ts17,ts24,ts69, (WR strain) andts6389 (IHD strain). Viral DNA synthesis was virtually undetectable during non-permissive infections performed withts17, and incorporation of3H-thymidine ceased rapidly when cultures were shifted to the non-permissive temperature in the midst of replication. The D5 protein may therefore be involved in DNA synthesis at the replication fork. The lesions of the four mutants were localized within the D5orf by marker rescue, and the single nucleotide changes responsible for thets phenotype of the three WR mutants were identified. Unexpectedly, the three alleles with N-terminal mutations were impaired in marker rescue when homologous recombination with small (<2 kb), intragenic DNA fragments at 39.5°C was required. This deficiency was not due to degradation of transfected DNA under non-permissive conditions. Efficient marker rescue could be restored by incubation at the permissive temperature for a brief period after transfection, suggesting a requirement for functional D5 in genome/plasmid recombination. Marker rescue under non-permissive conditions could alternatively be restored by co-transfection of unlinked but contiguous DNA sequences.  相似文献   

5.
Three previously isolated mutants of Neurospora crassa, temperature-sensitive for the production of cytochrome aa3, have been further analyzed. These mutants have a slightly reduced capacity for mitochondrial protein synthesis when grown at 41 degrees C, although this relative deficiency appeared to be no greater than the deficiency in other cytochrome-aa3-deficient mutants. Thermolability studies revealed that the cytochrome c oxidase purified from each of the mutants grown at 23 degrees C is no more sensitive to heat inactivation than the enzyme isolated from wild-type cells. Sodium dodecylsulfate gel electrophoresis of immunoprecipitates obtained from the mitochondria of each of the mutants grown at 23 degrees C, using antiserum directed against holocytochrome c oxidase, indicated that all the subunits of cytochrome c oxidase were present in relative amounts similar to those found in mitochondria from wild-type cultures. However, when the mitochondria from mutant cultures grown at 41 degrees C were examined in the above fashion, only subunits 5 and 6 of the oxidase were detected. Nonetheless, the mitochondrially synthesized subunit 1, 2 and 3 polypeptides could be immunoprecipitated from mitochondria isolated from mutant cells grown at 41 degrees C and labelled with [3H]leucine in medium containing cycloheximide. Although subunits 4 and 7 could not be detected, because a suitable antibody was not available, the fact that five of the seven subunits were present, but not associated with each other, suggested that the genetic defects in these mutants may affect the process of cytochrome c oxidase assembly.  相似文献   

6.
The genetic aspects of ori C replication initiation in Mycobacterium tuberculosis are largely unknown. A two-step genetic screen was utilized for isolating M. tuberculosis dna A cold-sensitive (cos) mutants. First, a resident plasmid expressing functional dna A integrated at the att B locus in dna A null background was exchanged with an incoming plasmid bearing a mutagenized dna A gene. Next, the mutants that were defective for growth at 30°C, a non-permissive temperature, but resumed growth and DNA synthesis when shifted to 37°C, a permissive temperature, were subsequently selected. Nucleotide sequencing analysis located mutations to different regions of the dna A gene. Modulation of the growth temperatures led to synchronized DNA synthesis. The dna A expression under synchronized DNA replication conditions continued to increase during the replication period, but decreased thereafter reflecting autoregulation. The dna Acos mutants at 30°C were elongated suggesting that they may possibly be blocked during the cell division. The DnaA115 protein is defective in its ability to interact with ATP at 30°C, but not at 37°C. Our results suggest that the optimal cell cycle progression and replication initiation in M. tuberculosis requires that the dna A promoter remains active during the replication period and that the DnaA protein is able to interact with ATP.  相似文献   

7.
The stability of both rapidly and slowly degraded proteins in wild type CHO cells is similar to that in three ts aminoacyl-tRNA synthetase mutants at both permissive and non-permissive temperatures, although the degree of tRNA charging in the synthetase mutants differs considerably with temperature. These results indicate that the altered rate of protein breakdown seen under a variety of physiological conditions in eukaryotic systems is not mediated by uncharged tRNA.  相似文献   

8.
Escherichia coli is capable of growing on L-fucose or L-rhamnose as a sole source of carbon and energy. When grown under anaerobic conditions on either sugar, a nicotinamide adenine dinucleotide-linked L-lactaldehyde:propanediol oxidoreductase activity is induced. The functioning of this enzyme results in the regeneration of oxidized nicotinamide adenine dinucleotide. Conditions of induction of the enzyme activity were studied and were found to display different characteristics on each sugar. In the rhamnose-grown cells, the increase in enzyme activity detected under inducing conditions was accompanied by the synthesis of propanediol oxidoreductase, as measured by the appearance in the extracts of a protein that reacts with propanediol oxidoreductase antibodies. In contrast, in fucose-grown cells, the level of propanediol oxidoreductase as measured by enzyme antibody-reacting material was high under noninducing and inducing conditions. Thus, the increase in enzyme activity detected in going from noninducing to inducing conditions in fucose-grown cells did not depend on the appearance of the specific protein but on the activation of the propanediol oxidoreductase already present in the cells in an inactive form. The propanediol oxidoreductase of both homologous systems should consequently be regulated by different control mechanisms.  相似文献   

9.
An unusual regulatory system of cephalosporinase synthesis in Citrobacter freundii has been found. When the bacteria are grown at 20 C, the cephalosporinase is synthesized as a typical inducible enzyme and benzylpenicillin acts as an effective inducer. The enzyme, however, is synthesized in the absence of the inducer at growth temperatures above 25 C. when the growth temperature is shifted from 20 C to 37 C, the induction of enzyme synthesis is observed after about one half of the organism doubling time, but it does not occur in the presence of chloramphenicol. The reverse control mutants, the enzyme constitutive synthesis of which is markedly depressed by benzylpenicillin, were isolated from the C. freundii wild strain. The possibility that the enzyme synthesis is governed by a regulatory system analogous to the its mutant of the lac operon in Escherichia coli was suggested.  相似文献   

10.
Three molybdoenzymes, nitrate reductase, formate benzyl-viologen oxidoreductase and trimethylamine-N-oxide reductase which form part of different systems, have been studied in a parental strain of Escherichia coli K12. When the organism is grown in the presence of 10 mM tungstate, these three enzymes are present in an inactive form which may be activated in vivo by the addition of 1 mM sodium molybdate. The mixing of soluble fractions from chlA and chlB mutants grown under the appropriate conditions leads to the activation of nitrate reductase, formate benzyl-viologen oxidoreductase and trimethylamine-N-oxide reductase. The activation of each enzyme is maximal when the mutants are grown under conditions that lead to the induction of that enzyme in the wild-type strain. The employment of purified proteins, the association factor FA and the Protein PA, which are presumed to be the products of the chlA and chlB genes, has shown that these proteins are responsible for the activation of the three enzymes during the complementation process.  相似文献   

11.
The vaccinia virus B1 gene encodes a 34-kDa protein with homology to protein kinases. In L cells infected nonpermissively with mutants containing lesions in the B1 gene (ts2 and ts25), the infectious cycle arrests prior to DNA replication. In this report, we demonstrate that DNA synthesis ceases when cultures infected with these mutants at 32 degrees C are shifted to the nonpermissive temperature (39.5 degrees C) in the midst of DNA replication. We also show that B1 protein is synthesized transiently during the early phase of infection, even when the progression to later stages of gene expression is prevented. Although wild-type (wt) B1 is stable, the ts B1 proteins are markedly labile in both L and BSC40 cells at both permissive and nonpermissive temperatures. These results suggest that the ts phenotype of the mutants is complex and may in part reflect a temperature-dependent requirement for kinase activity, an induction of temperature sensitivity in B1 substrates under nonpermissive conditions, and/or ts complementation by host factors. To facilitate biochemical analyses, recombinant wt B1, ts2 B1, and ts25 B1 were produced in Escherichia coli. The wt protein was able to phosphorylate serine and threonine residues on several exogenous substrates in vitro. The activity of ts25 B1 was 3% that of the wt enzyme, and no detectable kinase activity was associated with ts2 B1. In light of the inactivity of the ts2 B1 protein in vitro and its extreme lability in vivo, we attempted to isolate a vaccinia virus B1 null mutant by targeted interruption of the B1 gene at 32 degrees C. No null mutants were isolated. These results indicate that the B1 protein kinase provides a vital function which cannot be supplied by the host or circumvented by incubation at 32 degrees C.  相似文献   

12.
Of central importance to studying protein translocation via a combined genetic and biochemical approach is the in vitro analysis of yeast conditionally-lethal secretory mutants. Analysis of sec53 presented an opportunity not only to see if mutants could be examined in recently developed yeast in vitro translocation systems, but also to characterize further the nature of this mutant originally postulated to be defective in protein translocation. Membranes from sec53 were capable of translocating and glycosylating nascent prepro-alpha-factor in vitro in both sec53 and wild-type lysates at temperatures that were non-permissive for growth of the mutant cells. These results suggested that the Sec53 protein does not function directly in the translocation and glycosylation of prepro-alpha-factor. To examine this point further, we isolated membranes from sec53 cells that had been grown at the non-permissive temperature prior to disruption. In such cases, regardless of assay temperature, membranes from sec53 cells efficiently translocated but failed to glycosylate prepro-alpha-factor in vitro. The in vitro phenotype of sec53 could be mimicked by isolating rough microsomes from wild-type cells that had been grown for 1 h in the presence of tunicamycin. Together, these results demonstrate that sec53 is not defective in translocation, rather in assembly of the dolichol-oligosaccharide substrate needed for N-linked glycosylation.  相似文献   

13.
Summary Simian virus 40 (SV40) was used to probe ultraviolet light (UV) — induced mutation in mammalian cells. Viral mutations were scored as reversions of early and late temperature-sensitive (ts) mutants to the wild-type (WT) phenotype. When virus was exposed to moderate or high UV doses, WT revertants were obtained at a frequency related to the square of the dose from two early (tsA) and one late (tsBC) mutant grown at the restrictive temperature. The reversions generated in the progeny of UV-irradiated early mutants presumably arose before the onset of viral DNA replication because, at the non-permissive temperature, tsA mutants are unable to express the functions responsible for the initiation of viral DNA synthesis. Moreover, the early mutant tsA209 underwent similar levels of induced reversion at the permissive and restrictive temperatures, suggesting that the pre-replicative mutational pathway might predominate for moderately and heavily irradiated virus, even under conditions where DNA synthesis can be initiated. The analysis of bursts from revertant plaques produced at the restrictive temperature was consistent with this interpretation. Although the mechanism of pre-replicative mutagenesis is not known, it is likely to be mediated by cellular activities owing to the low genetic complexity of the virus.  相似文献   

14.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

15.
chlD gene function in molybdate activation of nitrate reductase.   总被引:24,自引:19,他引:5       下载免费PDF全文
chlD mutants of Escherichia coli lack active nitrate reductase but form normal levels of this enzyme when the medium is supplemented with 10-3 M molybdate. When chlD mutants were grown in unsupplemented medium and then incubated with molybdate in the presence of chloramphenicol, they formed about 5% the normal level of nitrate reductase. Some chlD mutants or the wild type grown in medium supplemented with tungstate accumulated an inactive protein which was electrophoretically identical to active nitrate reductase. Addition of molybdate to those cells in the presence of chloramphenicol resulted in the formation of fully induced levels of nitrate reductase. Two chlD mutants, including a deletion mutant, failed to accumulate the inactive protein and to form active enzyme under the same conditions. Insertion of 99-Mo into the enzyme protein paralleled activation; 185-W could not be demonstrated to be associated with the accumulated inactive protein. The rates of activation of nitrate reductase at varying molybdate concentrations indicated that the chlD gene product facilitates the activation of nitrate reductase at concentrations of molybdate found in normal growth media. At high concentrations, molybdate circumvented this function in chlD mutants and appeared to activate nitrate reductase by a mass action process. We conclude that the chlD gene plays two distinguishable roles in the formation of nitrate reductase in E. coli. It is involved in the accumulation of fully induced levels of the nitrate reductase protein in the cell membrane and it facilitates the insertion of molybdenum to form the active enzyme.  相似文献   

16.
Three different temperature sensitive mutants derived from the Syrian hamster cell line BHK 21 were found to have greatly reduced DNA synthesis at the non-permissive temperature. These mutants are distinct by complementation analysis and behave at the non-permissive temperature as cell cycle traverse defective mutants. Microfluorometric analysis of mutant populations arrested at the non-permissive temperature shows an accumulation of cells with G1 DNA content. Mutants ts 13 and ts HJ4 synchronized in G1 by serum or isoleucine deprivation and shifted to the non-permissive temperature at the time of release do not enter the S phase, while in the case of mutant ts 11 preincubation at the non-permissive temperature before release is required to completely prevent its entry into S. Ts 13 and ts 11 are able to traverse the S phase at the non-permissive temperature when synchronized at the boundary G1/S; in this case, preincubation of ts 11 at the non-permissive temperature before release does not affect the ability of these cells to perform DNA synthesis. On the other hand, ts HJ4 appears to traverse S only partially when tested under similar conditions. Temperature shift experiments of mutant populations at different times after isoleucine synchronization suggest that ts 13 and ts 11 are blocked at the non-permissive temperature in early G1, whereas ts HJ4 is probably affected near the initiation of DNA synthesis, or in some early S function.  相似文献   

17.
June Lascelles  David Wertlieb 《BBA》1971,226(2):328-340
Mutant strains of Rhodopseudomonas spheroides have been isolated which contain 5–50 times more bacteriochlorophyll and carotenoids than the wild type when grown under highly aerobic conditions in the dark. Their pigment content is similar to the wild type when grown in the light. One of the mutants (TA-R) grew more slowly than its parent strain under aerobic conditions but formed pigments at about 60% of the rate observed under photosynthetic conditions. The other mutants grew at rates similar to the wild type under all conditions. Synthesis of bacteriochlorophyll by suspensions of the mutants began without delay upon transfer from conditions of high to low aeration. In contrast to the wild type, magnesium protoporphyrin-S-adenosylmethionine methyltransferase (EC 2.1.1.11) activity in particulate preparations from the mutants was not repressed by growth under aerobic conditions in the light or dark. Ribulose diphosphate carboxylase (EC 4.1.1.39) activity was repressed by O2 in the mutants as in the wild type. Other enzyme activities were compared in mutant TA-R and its parent strain grown under the same conditions. NADH oxidase activity in particles from aerobically grown TA-R was about one third that found in the parent strain. However, the respiration rates of the intact cells did not differ. Light inhibited the respiration of aerobically grown TA-R, indicating that the bacteriochlorophyll formed under these conditions had photochemical activity. It is concluded that the insensitivity of the mutants to O2 repression is due to defects in the regulatory system which controls formation of the enzymes concerned in pigment synthesis.  相似文献   

18.
Of 48 temperature-sensitive mutants of Saccharomyces cerevisiae examined, five belonging to the same complementation group were found to undergo extensive loss of viability at the restrictive temperature. These mutants were protected from the lethal effects of exposure to a non-permissive temperature by starving for an auxotrophic requirement. By analogy with the method described by Littlewood [6] for selecting antibiotic-sensitive mutants, these temperature-sensitive mutants were found suitable in enriching for specific auxotrophs. Optimal conditions have been determined for selecting specific auxotrophs after mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine. These enable 20-fold enrichment and at least in the case of mutation to adenine dependence the method does not appear to favour mutations at any particular locus.  相似文献   

19.
Mutants of Escherichia coli with altered hydrogenase activity   总被引:5,自引:0,他引:5  
Mutant strains of Escherichia coli which expressed different levels of hydrogenase activity when grown anaerobically under a variety of conditions were obtained by mutagenesis and selective growth and screening procedures. Four classes of mutants were isolated, ranging from those devoid of enzyme activity to those expressing maximal activity under all growth conditions. One class of mutants (A) could not grow on fumarate plus H2 in the presence of active fumarate reductase. Since hydrogenase is essential for growth under these conditions some of these strains may be hydrogenase-negative. Three other classes of mutants were isolated which were all hydrogenase-positive and fully expressed this activity when grown on fumarate plus H2. They differed in the level of expression of hydrogenase activity when grown anaerobically on glucose, conditions which do not require hydrogenase for growth. Class B mutants expressed less activity, while class C mutants expressed more activity than the parental strain. Class D mutants fully expressed hydrogenase activity and were dependent on the enzyme for growth. The different strains were also assayed for reduction of dyes by hydrogen and for evolution of hydrogen from reduced methyl viologen. Some of the hydrogenase-positive strains showed altered activities in these assays suggesting that mutations may have occurred either in enzymes or proteins required for reaction with dyes or in the hydrogenase enzyme itself.  相似文献   

20.
Signal of induction of recA protein in E. coli   总被引:11,自引:0,他引:11  
The nature of the signal(s) responsible for the induction of the SOS functions in E. coli was investigated in dnaA and dnaC mutants, in which recA protein was induced by UV irradiation under conditions where no DNA replication could occur. This induction was dependent upon an active excision-repair system, since it was abolished in a dnaC uvrB double mutant at non-permissive temperature. In such a case, the addition of bleomycin, an agent known to produce single-strand breaks into DNA, was able to restore the induction of the recA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号