首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of microbial respiration can be described by a rate law that gives the respiration rate as the product of a rate constant, biomass concentration, and three terms: one describing the kinetics of the electron-donating reaction, one for the kinetics of the electron-accepting reaction, and a thermodynamic term accounting for the energy available in the microbe's environment. The rate law, derived on the basis of chemiosmotic theory and nonlinear thermodynamics, is unique in that it accounts for both forward and reverse fluxes through the electron transport chain. Our analysis demonstrates how a microbe's respiration rate depends on the thermodynamic driving force, i.e., the net difference between the energy available from the environment and energy conserved as ATP. The rate laws commonly applied in microbiology, such as the Monod equation, are specific simplifications of the general law presented. The new rate law is significant because it affords the possibility of extrapolating in a rigorous manner from laboratory experiment to a broad range of natural conditions, including microbial growth where only limited energy is available. The rate law also provides a new explanation of threshold phenomena, which may reflect a thermodynamic equilibrium where the energy released by electron transfer balances that conserved by ADP phosphorylation.  相似文献   

2.
Q. JIN 《Geobiology》2007,5(1):35-48
A new model describing the rate of syntrophic butyrate fermentation is constructed based on a thermodynamically consistent rate law and the metabolic pathway. This model takes into account the mechanism of reverse electron transfer and proposes that the net amount of energy saved by microorganisms as ATP depends on hydrogen partial pressures in the environment. Hydrogen partial pressures thus control not only the energy available in the environment but also the energy conserved by microorganisms. This new model predicts the rates of butyrate fermentation as a product of a kinetic factor and a thermodynamic potential factor: the kinetic factor describes how butyrate concentration controls the rates; the thermodynamic factor accounts for how the thermodynamic driving force controls the rates. Increases in hydrogen partial pressures decrease the energy available, lowering the driving force and fermentation rates. To maintain butyrate fermentation at significant rates, microorganisms decrease the amount of energy conserved, maximizing the driving force. Application of the new model demonstrates that the thermodynamic driving force is a dominant factor in controlling the rates of butyrate fermentation.  相似文献   

3.
Jin Q  Bethke CM 《Biophysical journal》2002,83(4):1797-1808
We show that the rate at which electrons pass through the respiratory chain in mitochondria and respiring prokaryotic cells is described by the product of three terms, one describing electron donation, one acceptance, and a third, the thermodynamic drive. We apply the theory of nonequilibrium thermodynamics in the context of the chemiosmotic model of proton translocation and energy conservation. This approach leads to a closed-form expression that predicts steady-state electron flux as a function of chemical conditions and the proton motive force across the mitochondrial inner membrane or prokaryotic cytoplasmic membrane. The rate expression, derived considering reverse and forward electron flow, is the first to account for both thermodynamic and kinetic controls on the respiration rate. The expression can be simplified under specific conditions to give rate laws of various forms familiar in cellular physiology and microbial ecology. The expression explains the nonlinear dependence of flux on electrical potential gradient, its hyperbolic dependence on substrate concentration, and the inhibiting effects of reaction products. It provides a theoretical basis for investigating life under unusual conditions, such as microbial respiration in alkaline waters.  相似文献   

4.
小麦和大豆茬口对黄瓜土壤微生物生态特征的影响   总被引:7,自引:0,他引:7  
采用常规稀释平板法和BIOLOG ECO微平板反应系统,研究了小麦和大豆茬口对黄瓜土壤微生物生态特征的影响.结果表明,两种茬口均显著提高了黄瓜土壤微生物真菌、细菌和放线菌的数量,显著降低了尖孢镰刀菌黄瓜专化型的数量(P<0.05);显著提高了土壤微生物群落的Shannon-Wiener指数、均匀度指数、Simpson指数和McIntosh指数(P<0.05)、以及土壤微生物生物量碳,降低了土壤基础呼吸和代谢商(P<0.05),改变了土壤微生物对单一碳源的利用能力.此外,两种茬口还显著提高了土壤中速效磷和速效钾含量,以及黄瓜产量.说明小麦和大豆茬口改善了土壤微生态环境.  相似文献   

5.
【背景】微生物电化学系统耦合了电化学反应和厌氧消化过程,在处理剩余污泥同时实现能源回收,成为具有应用前景的技术之一。揭示电活性生物膜和活性污泥种群互作机制,有助于进一步调控和强化系统性能。高通量核酸测序技术研究微生物群落具有投入大、耗时长和不可预测的缺点,开展微生物群落动态仿真可以更有效地预测群落结构与功能。【目的】研究厌氧消化和生物电化学系统的微生物种间热力学与动力学的演化规律。在考虑电子供体、电子受体、温度、pH值等生态条件下,分析底物的电子流向及微生物群落结构的动态变化。【方法】通过对剩余污泥处理的微生物电解池(Microbial electrolytic cell,MEC)建立一个多Agent仿真(Multi-agent-based simulation,MAS)模型,评估MEC对底物氧化电子转移的能量效率和传质效率,模拟微生物群落结构实时变化,同时耦合动力学和热力学分析;揭示影响MES运行的电子流向决定性因素及相应的微生物种群,为复杂污染物生物处理系统中种间互作和动力学研究提供基础依据。【结果】通过MAS模拟,确定MEC污泥处理工艺的最佳能量传递效率与传质效率为η=0.2,ε=0.5,MAS结合热力学与动力学参数模拟微生物的群落动态与实验组有较高的吻合性。在长期的运行中,微生物电化学系统中丙酮酸没有积累。【结论】证实了MAS结合热力学与动力学参数可以预测微生物的群落动态,并进行实时监测。研究表明多Agent仿真为微生物群落结构动态变化提供了一种新的研究方法,该方法与高通量核酸测序技术进行校验和联用,为人工和自然生态系统中微生物种群预测与评估研究提供一个新的手段。  相似文献   

6.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

7.
Many models that describe the turnover of the microbial biomass in soil use either first order kinetics where the rate of turnover is directly proportional to the microbial mass, or a variant of the Michaelis-Menten law that describes enzyme kinetics. To account for the different rates of microbial turnover observed at different times after the addition of substrate, some authors have suggested the existence of more than one pool of biomass. Each pool obeys the same kinetic law but with a different rate. In other experiments a disproportionately large increase in the turnover of native organisms has been observed relative to the amount of fresh substrate added. A change in the kinetic law describing the turnover of organisms can account for these observations and yet retain the simplicity of a single pool of micro-organisms. However where multiple pools of organisms are justified a mixed kinetic law with both first and second order terms may be more appropriate; in other words one pool of micro-organisms but two rate constants. The advantage of retaining a single pool of microbial biomass is that models may more readily be constructed in relation to the routine measurements of total microbial mass.  相似文献   

8.
The ability of microorganisms to use chlorate (ClO3-) as an electron acceptor for respiration under anaerobic conditions was studied in batch and continuous tests. Complex microbial communities were cultivated anaerobically in defined media containing chlorate, all essential minerals, and acetate as the sole energy and carbon source. It was shown that chlorate was reduced to chloride, while acetate was oxidized to carbon dioxide and water and used as the carbon source for synthesis of new biomass. A biomass yield of 1.9 to 3.8 g of volatile suspended solids per equivalent of available electrons was obtained, showing that anaerobic growth with chlorate as an electron acceptor gives a high energy yield. This indicates that microbial reduction of chlorate to chloride in anaerobic systems is coupled with electron transport phosphorylation.  相似文献   

9.
10.
微生物胞外呼吸是厌氧环境中控制性能量代谢方式,直接驱动着C、N、S、Fe等关键元素的生物地球化学循环。微生物纳米导线(Microbial nanowires)的发现,被认为是微生物胞外呼吸的里程碑事件,推动了电微生物学(Electromicrobiology)的形成与发展。微生物纳米导线是一类由微生物合成的,具有导电性的纤维状表面附属结构。通过细菌纳米导线,微生物胞内代谢产生的电子可以长距离输送到胞外受体或其他微生物,改变了电子传递链仅仅局限于细胞胞内的认识,从而大大拓展了微生物-胞外环境互作的范围。微生物纳米导线的良好导电性,赋予了其作为天然纳米材料的广阔应用前景。目前,微生物纳米导线的导电机制、生态功能及其在生物材料、生物能源、生物修复及人体健康多领域的应用,已经成为新兴电微生物学的前沿与热点。然而,微生物纳米导线的生物学、生态学功能尚不清楚,它的电子传递机制仍存在分歧。本文在系统性总结微生物纳米导线性质、功能的基础上,以Geobacter sulfurreducensShewanella oneidensis纳米导线为模型,详细阐述了纳米导线的组成与结构、表征与测量方法、导电理论(类金属导电学说与电子跃迁学说)及其潜在的应用,最后提出了未来微生物纳米导线研究的重点方向、挑战与机遇。  相似文献   

11.
Soil microbial respiration is a critical component of the global carbon cycle, but it is uncertain how properties of microbes affect this process. Previous studies have noted a thermodynamic trade-off between the rate and efficiency of growth in heterotrophic organisms. Growth rate and yield determine the biomass-specific respiration rate of growing microbial populations, but these traits have not previously been used to scale from microbial communities to ecosystems. Here we report seasonal variation in microbial growth kinetics and temperature responses (Q10) in a coniferous forest soil, relate these properties to cultured and uncultured soil microbes, and model the effects of shifting growth kinetics on soil heterotrophic respiration (Rh). Soil microbial communities from under-snow had higher growth rates and lower growth yields than the summer and fall communities from exposed soils, causing higher biomass-specific respiration rates. Growth rate and yield were strongly negatively correlated. Based on experiments using specific growth inhibitors, bacteria had higher growth rates and lower yields than fungi, overall, suggesting a more important role for bacteria in determining Rh. The dominant bacteria from laboratory-incubated soil differed seasonally: faster-growing, cold-adapted Janthinobacterium species dominated in winter and slower-growing, mesophilic Burkholderia and Variovorax species dominated in summer. Modeled Rh was sensitive to microbial kinetics and Q10: a sixfold lower annual Rh resulted from using kinetic parameters from summer versus winter communities. Under the most realistic scenario using seasonally changing communities, the model estimated Rh at 22.67 mol m−2 year−1, or 47.0% of annual total ecosystem respiration (Re) for this forest.  相似文献   

12.
Kinetic criteria for solid state physical mechanisms of electron and ion transport in biological systems are summarized, and the mechanisms are discussed. A reaction which is rate-limited by electron or ion transport across a particle or membrane in accord with Ohm's law will show first order kinetics, with an hyperbolic relationship between rate constant and the sum of substrate plus product. Larger initial substrate concentrations produce smaller rate constants, thus giving the appearance of substrate inhibition. Examples are cytochrome oxidase and peroxidase, and pyruvate carboxylase. Ohmic transport mechanisms may be caused by electron conduction or superconduction through protein, by electron conduction through water, or by conduction of ions through membranes. A reaction which is rate-limited by charge transport across an activation energy barrier at an interface in accord with a logarithmic voltage-current law will show reaction kinetics conforming to the Elovich equation, and will have the appearance of a pair of simultaneous first order processes. Examples include decay of photogenerated free radicals in eye melanin particles and in photosynthetic particles of bacteria, and sodium and potassium ion transport across cell surfaces. The logarithmic voltage-current law may be regarded as an empirical relationship describing behavior of interfaces, justified by extensive experimental data on many types of interfaces, or it may be derived theoretically for individual cases from statistical mechanical and/or solid state physical considerations. Dedicated to Prof. N. Rashevsky and to his enlightened editorial policy, especially to his policy of publishing that which is new, even when he disagrees with it.  相似文献   

13.
This study evaluated the chronic impact of erythromycin, a macrolide antibiotic, on microbial activities, mainly focusing on changes in process kinetics induced on substrate biodegradation and all related biochemical processes of microbial metabolism. Experiments involved two fill/draw reactors sustained at steady state at two different sludge ages of 10 and 2.0 days, fed with peptone mixture and continuous erythromycin dosing of 50 mg/L. Oxygen uptake rate profiles were generated in a series of parallel batch reactors seeded with biomass from fill/draw systems at selected periods of steady-state operation. Experimental data were evaluated by model calibration reflecting inhibitory effect on process kinetics: continuous erythromycin dosing inhibited microbial growth, reduced the rate of hydrolysis, blocked substrate storage and accelerated endogenous respiration. Adverse impact was mainly due to changes inflicted on the composition of microbial community. Interruption of erythromycin feeding resulted in partial recovery of microbial response. Sludge age affected the nature of inhibition, indicating different process kinetics for faster growing microbial community. Kinetic evaluation additionally revealed the toxic effect of erythromycin, which inactivated a fraction of biomass. Mass balance using oxygen uptake rate data also identified a stoichiometric impact, where a fraction of available substrate, although completely removed, could not be utilized in metabolic activities.  相似文献   

14.
15.
The steady-state kinetics of Pseudomonas aeruginosa cytochrome oxidase were studied. Reduced cytochrome c551 and azurin from the same bacteria were used as the electron-donating substrates, while dioxygen served as the electron acceptor. Oxidized cytochrome c551 and azurin exhibited product inhibition of the reaction. However, apo-azurin and azurin derivatives in which the copper was substituted by the redox-inert ions Ni2+, Co2+, Cd2+ and Zn2+, did not show any effect on the kinetics. These observations implied that complex formation between the substrates or the products and the enzyme is not a rate-limiting step and is not the cause for product inhibition. The integrated rate law for a reaction scheme in which we assumed that complex formation was not rate limiting was fitted to the complete reaction traces. The results suggested that it is the low thermodynamic driving force, expressed in the small differences in redox potential between the substrates and heme c of the enzyme, which cause the observed product inhibition.  相似文献   

16.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

17.
Arsenite oxidation and arsenate respiration by a new Thermus isolate   总被引:5,自引:0,他引:5  
A new microbial strain was isolated from an arsenic-rich terrestrial geothermal environment. The isolate, designated HR13, was identified as a Thermus species based on 16S rDNA phylogenetic relationships and close sequence similarity within the Thermus genus. Under aerobic conditions, Thermus HR13 was capable of rapidly oxidizing inorganic As(III) to As(V). As(III) was oxidized at a rate approximately 100-fold greater than abiotic rates. Metabolic energy was not gained from the oxidation reaction. In the absence of oxygen, Thermus HR13 grew by As(V) respiration coupled with lactate oxidation. The ability to oxidize and reduce arsenic has not been previously described within the Thermus genus.  相似文献   

18.
Post-Viking Microbiology: New Approaches,New Data,New Insights   总被引:1,自引:0,他引:1  
In the 20 years since the Viking experiments, major advances have been made in the areas of microbial systematics, microbial metabolism, microbial survival capacity, and the definition of environments on earth, suggesting that life is more versatile and tenacious than was previously appreciated. Almost all niches on earth which have available energy, and which are compatible with the chemistry of carbon-carbon bonds, are known to be inhabited by bacteria. The oldest known bacteria on earth apparently evolved soon after the formation of the planet, and are heat loving, hydrogen and/or sulfur metabolizing forms. Among the two microbial domains (kingdoms) is a great deal of metabolic diversity, with members of these forms being able to grow on almost any known energy source, organic or inorganic, and to utilize an impressive array of electron acceptors for anaerobic respiration. Both hydrothermal environments and the deep subsurface environments have been shown to support large populations of bacteria, growing on energy supplied by geothermal energy, thus isolating these ecosystems from the rest of the global biogeochemical cycles. This knowledge, coupled with new insights into the history of the solar system, allow one to speculate on possible evolution and survival of life forms on Mars.  相似文献   

19.
Stoichiometric relationships for biological reactions involving intermediate formation are developed from microbial reaction fundamentals and thermodynamic principles. Biological reactions proceed through intermediates, which sequester carbon and electrons whenever their degradation is relatively slow. Modeling intermediate formation and subsequent utilization requires evaluation of the distribution of electrons, energy, and macronutrients (C and N) between energy-generating pathways and cell-synthesis pathways for each step in the mineralization of the primary electron-donor substrate. We describe how energy and electron balances are utilized to predict the stoichiometry for each step of a multi-step degradation process. Each stoichiometric relationship developed predicts substrate utilization, cell growth, and the formation of other products (e.g., H(2)CO(3) or H(+)) for one step in the pathway to full mineralization. A modeling example demonstrates how different kinetics for each step in the degradation of nitrilotriacetic acid (NTA) leads to observed patterns in experimental results, such as a delay in the release of H(2)CO(3) after NTA is removed from solution.  相似文献   

20.
Non-equilibrium thermodynamics has long been an area of substantial interest to ecologists because most fundamental biological processes, such as protein synthesis and respiration, are inherently energy-consuming. However, most of this interest has focused on developing coarse ecosystem-level maximisation principles, providing little insight into underlying mechanisms that lead to such emergent constraints. Microbial communities are a natural system to decipher this mechanistic basis because their interactions in the form of substrate consumption, metabolite production, and cross-feeding can be described explicitly in thermodynamic terms. Previous work has considered how thermodynamic constraints impact competition between pairs of species, but restrained from analysing how this manifests in complex dynamical systems. To address this gap, we develop a thermodynamic microbial community model with fully reversible reaction kinetics, which allows direct consideration of free-energy dissipation. This also allows species to interact via products rather than just substrates, increasing the dynamical complexity, and allowing a more nuanced classification of interaction types to emerge. Using this model, we find that community diversity increases with substrate lability, because greater free-energy availability allows for faster generation of niches. Thus, more niches are generated in the time frame of community establishment, leading to higher final species diversity. We also find that allowing species to make use of near-to-equilibrium reactions increases diversity in a low free-energy regime. In such a regime, two new thermodynamic interaction types that we identify here reach comparable strengths to the conventional (competition and facilitation) types, emphasising the key role that thermodynamics plays in community dynamics. Our results suggest that accounting for realistic thermodynamic constraints is vital for understanding the dynamics of real-world microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号