首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
K. Li  J. Ren  Y. Xing  Z. Zhang  J. Ma  Y. Guo  L. Huang 《Animal genetics》2009,40(6):963-966
To detect quantitative trait loci (QTL) for litter size related traits, the total number of born piglets (TNB), the number of born alive piglets (NBA), the number of stillborn piglets (NSB) and the number of mummies (NM) at the first parity were recorded in 299 F2 sows in a White Duroc × Chinese Erhualian intercross resource population. A whole genome scan was performed with 183 microsatellites distributed across 19 porcine chromosomes in the resource population, and the QTL analysis was performed with a least-squares method. A 5% genome-wide significant QTL was detected at 88 cM on pig chromosome (SSC) 15 for NBA, which also showed suggestive effect on TNB. In addition, four suggestive QTL were detected on SSC 6, 7, 8 and 15 for TNB, NBA or NSB. Two of the five QTL detected showed accordance with previous reports. No QTL was found for NM.  相似文献   

2.
Carcass and meat quality traits are economically important in pigs. In this study, 17 carcass composition traits and 23 meat quality traits were recorded in 1028 F2 animals from a White Duroc × Erhualian resource population. All pigs in this experimental population were genotyped for 194 informative markers covering the entire porcine genome. Seventy-seven genome-wide significant quantitative trait loci (QTL) for carcass traits and 68 for meat quality were mapped to 34 genomic regions. These results not only confirmed many previously reported QTL but also revealed novel regions associated with the measured traits. For carcass traits, the most prominent QTL was identified for carcass length and head weight at 57 cM on SSC7, which explained up to 50% of the phenotypic variance and had a 95% confidence interval of only 3 cM. Moreover, QTL for kidney and spleen weight and lengths of cervical vertebrae were reported for the first time in pigs. For meat quality traits, two significant QTL on SSC5 and X were identified for both intramuscular fat content and marbling score in the longissimus muscle, while three significant QTL on SSC1 and SSC9 were found exclusively for IMF. Both LM and the semimembranous muscle showed common QTL for colour score on SSC4, 5, 7, 8, 13 and X and discordant QTL on other chromosomes. White Duroc alleles at a majority of QTL detected were favourable for carcass composition, while favourable QTL alleles for meat quality originated from both White Duroc and Erhualian.  相似文献   

3.
White blood cell count and platelets are implicated as risk factors for common complex diseases. Genetic factors substantially affect these traits in humans and mice. However, little is known about the genetic architecture of these traits in pigs. To identify quantitative trait loci (QTL) for leucocyte- and platelet-related traits in pigs, the total leucocyte number and differential leucocyte counts including the fraction of basophils, eosinophils, lymphocytes, monocytes, neutrophils, and a series of platelet parameters including platelet count, mean platelet volume, platelet distribution width and plateletcrit were measured in 1033 F2 animals on 240 days from a White Duroc × Erhualian intercross resource population. A total of 183 informative microsatellites distributed across 19 pig chromosomes (SSC) were genotyped across the entire resource population. Thirty-three QTL were identified for the examined traits, including eight genome-wide significant QTL for white blood cells and differential leucocyte counts on SSC2, 7, 8, 12 and 15 and six significant QTL for platelet-related traits on SSC2, 8, 13 and X. Erhualian or White Duroc alleles were not systematically associated with increased phenotypic values. These results not only confirmed many QTL identified previously in the mouse and swine, but also revealed a number of novel QTL for the traits recorded. Moreover, it is the first time that QTL for platelet-related traits in pigs have been reported.  相似文献   

4.
A genome scan was conducted on 370 F2 Duroc-Landrace pigs. Microsatellite markers (n = 182) were genotyped across the entire F2 population, all F1 parents and the paternal grandparents. Breed of origin of all chromosomal segments inherited in F2 progeny were predicted using GenoProb, where genotypic data, genetic maps and extended pedigrees were used as inputs. Statistical tests for quantitative trait loci (QTL) associations were conducted on 41 phenotypes with SAS using output from GenoProb for genotypic data. Fixed effects included sex and age at slaughter. For certain analyses carcass weight, RYR1 genotype and/or PRKAG3 genotype were also included as covariates. Subjective and objective measures of pork colour, marbling and tenderness were recorded, as well as measures of carcass fatness and muscularity. Test results were adjusted to a genome-wide level of significance. Five genomic regions presented significant evidence for QTL at chromosome 1 positions 6 cM (intramuscular fat) and 67 cM (Hunter L*), chromosome 2 position 62 cM (taste panel tenderness), chromosome 17 position 50 (loineye area and image analysis estimated loineye area) and X position 87 cM (carcass weight). Sixty-six suggestive associations were detected. Fourteen of these associations were within the regions with significant QTL on chromosomes 2, 17 and X, and the remaining 52 associations resided in 29 other regions on 13 different chromosomes of the porcine genome. The chromosome 2 region of 60-66 cM was associated with all measures of pork tenderness and the region on chromosome 17 (32-39 cM) was associated with both measures of intramuscular fat and loineye area. After verification, the QTL for marbling and tenderness should be useful in commercial production to improve pork quality as the population was developed from two of the three most utilized breeds of swine in the USA.  相似文献   

5.
Mapping quantitative trait loci regulating chicken body composition traits   总被引:1,自引:0,他引:1  
Genome scans were conducted on an F2 resource population derived from intercross of the White Plymouth Rock with the Silkies Fowl to detect QTL affecting chicken body composition traits. The population was genotyped with 129 microsatellite markers and phenotyped for 12 body composition traits on 238 F2 individuals from 15 full-sib families. In total, 21 genome-wide QTL were found to be responsible for 11 traits, including two newly studied traits of proventriculus weight and shank girth. Three QTL were genome-wide significant: at 499 c m on GGA1 (explained 3.6% of phenotypic variance, P  < 0.01) and 51 c m on GGA5 (explained 3.3% of phenotypic variance, P  < 0.05) for the shank & claw weight and 502 c m on GGA1 (explained 1.4% of phenotypic variance, P  < 0.05) for wing weight. The QTL on GGA1 seemed to have pleiotropic effects, also affecting gizzard weight at 490 c m , shank girth at 489 c m and intestine length at 481 c m . It is suggested that further efforts be made to understand the possible pleiotropic effects of the QTL on GGA1 and that on GGA5 for two shank-related traits.  相似文献   

6.
Gao Y  Hu XX  Du ZQ  Deng XM  Huang YH  Fei J  Feng JD  Liu ZL  Da Y  Li N 《Animal genetics》2006,37(3):276-278
A genome scan to detect quantitative trait loci (QTL) affecting body weight in chickens was conducted on 238 F(2) chickens from a reciprocal cross of Silky Fowl and White Plymouth Rock using 125 microsatellite markers covering 23 autosomes and the Z chromosome. Two types of QTL were considered: static QTL (SQ) and developmental QTL (DQ). Static QTL affected the body weight from hatch to time t, and DQ affected the body weight from time t-1 to time t. Six SQ and nine DQ were detected. Of these QTL, four reached a genome-wide significance of 5% or better, with SQ1 and DQ1 being the most significant QTL. Static QTL1 was on chromosome 1 between GCT0006 and MCW0106 and explained 4.05-9.80% of the phenotypic variation in body weights from 3 to 12 weeks of age. At 9, 10 and 11 weeks, the genome-wide significance thresholds of SQ1 were <1%. Developmental QTL1 was located on chromosome 1 between MCW0168 and GCT0006, and explained 2.75% of the phenotypic variation for body weight from week 7 to 8 with a genome-wide significance level <1%. The results suggest that body weight from hatch to time t and developmental growth from time t-1 to time t may involve two different sets of genes or gene actions.  相似文献   

7.
8.
We herein report results from a daughter design genome-scan study aiming to identify quantitative trait loci (QTL) associated with birth weight, direct gestation length and passive immune transfer in a backcross (Holstein × Jersey) × Holstein population. Two-hundred and seventy-six calves, offspring of seven crossbred sires, were genotyped for 161 microsatellite markers distributed along the 29 bovine autosomes. The genome scan was performed through interval mapping using an animal model in order to identify QTL accounting for phenotypic differences between individual animals. Based on significant chi-squared values, we identified putative QTL on BTA7 and BTA14 for gestation length, on BTA2, BTA6 and BTA14 for birth weight and on BTA20 for passive immune transfer. In total, these QTL accounted for 12%, 18% and 1% of the phenotypic variance in gestation length, birth weight and passive immune transfer respectively. We also report results from a supplementary and independent influential grand-daughter Holstein family. In this family, findings on BTA7 and BTA14 for direct gestation length were in agreement with results in the crossbred population. Two other regions on BTA6 and BTA21 putatively underlying QTL for direct gestation length variability were discovered with this analysis.  相似文献   

9.
T. Guo  J. Ren  K. Yang  J. Ma  Z. Zhang  L. Huang 《Animal genetics》2009,40(2):185-191
A whole-genome scan was performed on 660 F2 animals including 250 barrows and 410 gilts in a White Duroc × Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health.  相似文献   

10.
A porcine genome linkage map composed of 194 microsatellite markers was constructed with a large-scale White Duroc × Erhualian resource population. The marker order on this linkage map was consistent with the USDA-MARC reference map except for two markers on SSC3, two markers on SSC13 and two markers on SSCX. The length of the sex-averaged map (2344.9 cM) was nearly the same as that of the USDA-MARC and NIAI map. Highly significant heterogeneity in recombination rates between sexes was observed. Except for SSC1 and SSC13, the female autosomes had higher average recombination rates than the male autosomes. Moreover, recombination rates in the pseudoautosomal region were greater in males than in females. These observations are consistent with those of previous reports. The recombination rates on each paternal and maternal chromosome of F2 animals were calculated. Recombination rates were not significantly affected by the age (in days) or parity of the F1 animals. However, recombination rates on paternal chromosomes were affected by the mating season of the F1 animals. This could represent an effect of environmental temperature on spermatogenesis.  相似文献   

11.
In this report we describe the analysis of an advanced intercross line (AIL) to confirm the quantitative trait locus (QTL) regions found for fatness traits in a previous study. QTL analysis was performed on chromosomes 1, 3, 4, 15, 18, and 27. The AIL was created by random intercrossing in each generation from generation 2 (G2) onwards until generation 9 (G9) was reached. QTL for abdominal fat weight (AFW) and/or percentage abdominal fat (AF%) on chromosomes 1, 3 and 27 were confirmed in the G9 population. In addition, evidence for QTL for body weight at the age of 5 (BW5) and 7 (BW7) weeks and for the percentage of intramuscular fat (IF%) were found on chromosomes 1, 3, 15, and 27. Significant evidence for QTL was detected on chromosome 1 for BW5 and BW7. Suggestive evidence was found on chromosome 1 for AFW, AF% and IF%, on chromosome 15 for BW5, and on chromosome 27 for AF% and IF%. Furthermore, evidence on the chromosome-wise level was found on chromosome 3 for AFW, AF%, and BW7 and on chromosome 27 for BW5. For chromosomes 4 and 18, test statistics did not exceed the significance threshold.  相似文献   

12.
Gao Y  Feng CG  Song C  Du ZQ  Deng XM  Li N  Hu XX 《Animal genetics》2011,42(6):670-674
Body size traits reflect the condition of body development, are always mentioned when a breed is described, and are also targets in breeding programmes. In chicken, there are several reports focused on body size traits, such as shank length, tibia length or bone traits. However, no study was carried out on chest width (CW), chest depth (CD), body slope length (BL) and head width (HW) traits. In this study, genome scans were conducted on an F2 resource population (238 F2 individuals from 15 full‐sib families derived from an intercross of the White Plymouth Rock with the Silkies Fowl) to identify quantitative trait loci (QTL) associated with CW, CD, BL and HW from 7 to 12 weeks of age. In total, 21 significant or suggestive QTL were found that affected four body size traits. Four QTL reached 1% genome‐wide significance level: at 297 cM on GGA3 (associated with CW at 9 weeks of age), between 155 and 184 cM on GGA1 (affecting BL traits at 9 and 10 weeks of age), at 22 cM on GGA2 (related with BL traits at 12 weeks of age) and at 36 cM on GGA1 (for HW trait at 8 weeks of age).  相似文献   

13.
Clinical–chemical traits are diagnostic parameters essential for characterization of health and disease in veterinary practice. The traits show significant variability and are under genetic control, but little is known about the fundamental genetic architecture of this variability, especially in swine. We have identified QTL for alkaline phosphatase (ALP), lactate (LAC), bilirubin (BIL), creatinine (CRE) and ionized sodium (Na+), potassium (K+) and calcium (Ca++) from the serum of 139 F2 pigs from a Meishan/Pietrain family before and after challenge with Sarcocystis miescheriana , a protozoan parasite of muscle. After infection, the pigs passed through three stages representing acute disease, subclinical disease and chronic disease. Forty-two QTL influencing clinical–chemical traits during these different stages were identified on 15 chromosomes. Eleven of the QTL were significant on a genome-wide level; 31 QTL were chromosome-wide significant. QTL showed specific health/disease patterns with respect to the baseline values of the traits as well as the values obtained through the different stages of disease. QTL influencing different traits at different times were found primarily on chromosomes 1, 3, 7 and 14. The most prominent QTL for the investigated clinical–chemical traits mapped to SSC3 and 7. Baseline traits of ALP, LAC, BIL, Ca++ and K+ were influenced by QTL regions on SSC3, 6, 7, 8 and 13. Single QTL explained up to 21.7% of F2 phenotypic variance. Our analysis confirms that variation of clinical–chemical traits is associated with multiple chromosomal regions.  相似文献   

14.
To detect quantitative trait loci (QTL) that influence economically important traits in a purebred Japanese Black cattle population, we performed a preliminary genome-wide scan using 187 microsatellite markers across a paternal half-sib family composed of 258 offspring. We located six QTL at the 1% chromosome-wise level on bovine chromosomes (BTA) 4, 6, 13, 14 and 21. A second screen of these six QTL regions using 138 additional paternal offspring half-sib from the same sire, provided further support for five QTL: carcass weight on BTA14 (22-39 cM), one for rib thickness on BTA6 (27-58 cM) and three for beef marbling score (BMS) on BTA4 (59-67 cM), BTA6 (68-89 cM) and BTA21 (75-84 cM). The location of QTL for subcutaneous fat thickness on BTA13 was not supported by the second screen (P > 0.05). We determined that the combined contribution of the three QTLs for BMS was 10.1% of the total variance. The combined phenotypic average of these three Q was significantly different (P < 0.001) from those of other allele combinations. Analysis of additional half-sib families will be necessary to confirm these QTL.  相似文献   

15.
An F2 resource population, derived from a broiler × layer cross, was used to map quantitative trait loci (QTL) for body weights at days 1, 35 and 41, weight gain, feed intake, feed efficiency from 35 to 41 days and intestinal length. Up to 577 F2 chickens were genotyped with 103 genetic markers covering 21 linkage groups. A preliminary QTL mapping report using this same population focused exclusively on GGA1. Regression methods were applied to line-cross and half-sib models for QTL interval mapping. Under the line-cross model, eight QTL were detected for body weight at 35 days (GGA2, 3 and 4), body weight at 41 days (GGA2, 3, 4 and 10) and intestine length (GGA4). Under the half-sib model, using sire as common parent, five QTL were detected for body weight at day 1 (GGA3 and 18), body weight at 35 days (GGA2 and 3) and body weight at 41 days (GGA3). When dam was used as common parent, seven QTL were mapped for body weight at day 1 (GGA2), body weight at day 35 (GGA2, 3 and 4) and body weight at day 41 (GGA2, 3 and 4). Growth differences in chicken lines appear to be controlled by a chronological change in a limited number of chromosomal regions.  相似文献   

16.
Two half-sib families of backcross progeny were produced by mating F1 Line 1 Hereford (L1) × composite gene combination (CGC) bulls with L1 and CGC cows. Feed intake and periodic weights were measured for 218 backcross progeny. These progenies were genotyped using 232 microsatellite markers that spanned the 29 BTA. Progeny from L1 and CGC females was analysed separately using composite interval mapping to find quantitative trait loci (QTL) affecting daily dry matter intake (DMI), average daily gain (ADG), feed conversion (FCR) and residual feed intake (RFI). Results from both backcrosses were pooled to find additional QTL. In the backcross to L1, QTL were detected for RFI and DMI on BTA11, FCR on BTA16, and ADG on BTA9. In the backcross to CGC, QTL were detected for RFI on BTA10, FCR on BTA12 and 16 and ADG on BTA15 and 17. After pooling, QTL were detected for RFI on BTA 2, 6, 7, 10, 11, 13 and 16; for FCR on BTA 9, 12, 16, 17 and 21; for ADG on BTA 9, 14, 15, 17; and for DMI on BTA 2, 5, 6, 9, 10, 11, 20 and 23.  相似文献   

17.
Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different broiler dam lines that originated from the White Plymouth Rock breed was used to produce a three-generation population. This population was used for the detection and localization of quantitative trait loci (QTL) affecting PHS-related traits. Ten full-sib families consisting of 456 G2 birds were typed with 420 microsatellite markers covering 24 autosomal chromosomes. Phenotypic observations were collected on 4202 G3 birds and a full-sib across family regression interval mapping approach was used to identify QTL. There was statistical evidence for QTL on chicken chromosome 2 (GGA2), GGA4 and GGA6. Suggestive QTL were found on chromosomes 5, 8, 10, 27 and 28. The most significant QTL were located on GGA2 for right and total ventricular weight as percentage of body weight (%RV and %TV respectively). A related trait, the ratio of right ventricular weight as percentage to total ventricular weight (RATIO), reached the suggestive threshold on this chromosome. All three QTL effects identified on GGA2 had their maximum test statistic in the region flanked by markers MCW0185 and MCW0245 (335-421 cM).  相似文献   

18.
A large proportion of gilts and sows are culled from reproduction populations because of anestrus and pubertal reproductive failure. Selecting early onset of puberty gilts has a favorable effect on sows’ reproductivity. However, age at puberty is hard to be routinely measured in commercial herds. With molecular genetic predictors, identifying individuals that have a propensity for early onset of puberty can be simplified. We previously performed genome scanning and a genome‐wide association study for puberty in an F2 resource population using 183 microsatellites and 62 125 SNPs respectively. The detection power and resolution of identified quantitative trait loci were very low. Herein, we re‐sequenced 19 founders of the F2 resource population in high coverage, and whole genome sequences of F2 individuals were imputed to perform an association study for reproductive traits. A total of 2339 SNPs associated with pubertal reproductive failure were identified in the region of 30.94–40.74 Mb on SSC7, with the top one, positioned at 33.36 Mb, explaining 16% of the phenotypic variances. We improved the magnitude of the P‐value by 10E+5 to 10E+7 using the whole genome sequence rather than using low/middle density markers as in previous studies, and we narrowed down the QTL confidence interval to 5.25 Mb. Combining the annotation of gene function, RAB23 and BAK1 were perceived as the most compelling candidate genes. The identified loci may be useful in culling sows failing to show estrus by marker‐assisted selection to increase reproductive efficiency of swine herds.  相似文献   

19.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   

20.
An integrative approach for the identification of quantitative trait loci   总被引:2,自引:1,他引:1  
The genetic dissection of complex traits is one of the most difficult and most important challenges facing science today. We discuss here an integrative approach to quantitative trait loci (QTL) mapping in mice. This approach makes use of the wealth of genetic tools available in mice, as well as the recent advances in genome sequence data already available for a number of inbred mouse strains. We have developed mapping strategies that allow a stepwise narrowing of a QTL mapping interval, prioritizing candidate genes for further analysis with the potential of identifying the most probable candidate gene for the given trait. This approach integrates traditional mapping tools, fine mapping tools, sequence-based analysis, bioinformatics and gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号