首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The function of bcl-2 in preventing cell death is well known, but the mechanisms whereby bcl-2 functions are not well characterized. One mechanism whereby bcl-2 is thought to function is by alleviating the effects of oxidative stress upon the cell. To examine whether Bcl-2 can protect cells against oxidative injury resulting from post-hypoxic reoxygenation (H/R), we subjected rat fibroblasts Rat-1 and their bcl-2 transfectants b5 to hypoxia (5% CO2, 95% N2) followed by reoxygenation (5% CO2, 95% air). The bcl-2 transfectants exhibited the cell viability superior to that of their parent non-transfectants upon treatment with reoxygenation after 24-, 48-, or 72-h hypoxia, but not upon normoxic serum-deprivation or upon serum-supplied hypoxic treatment alone. Thus bcl-2 transfection can prevent cell death of some types, which occurred during H/R but yet not appreciably until termination of hypoxia. The time-sequential events of H/R-induced cell death were shown to be executed via (1) reactive oxygen species (ROS) production at 1-12 h after H/R, (2) activation of caspases-1 and -3, at 1-3 h and 3-6 h after H/R, respectively, and (3) loss of mitochondrial membrane potential (DeltaPsi) at 3-12 h after H/R. These cell death-associated events were prevented entirely except caspase-1 activation by bcl-2 transfection, and were preceded by Bcl-2 upregulation which was executed as early as at 0-1 h after H/R for the bcl-2 transfectants but not their non-transfected counterpart cells. Thus upregulation of Bcl-2 proteins may play a role in prevention of H/R-induced diminishment of cell viability, but may be executed not yet during hypoxia itself and be actually operated as promptly as ready to go immediately after beginning of H/R, resulting in cytoprotection through blockage of either ROS generation, caspase-3 activation, or DeltaPsi decline.  相似文献   

2.
Vascular endotheliocytes BAE-2 underwent the gradually proceeding cell death until 48 h after reoxygenation (Reox) following 3 h anoxia (Anox), but protected by pre-Anox administration with L-ascorbic acid (Asc)-2-O-phosphate (Asc2P), an autooxidation-resistant Asc derivative, but not by Asc itself. This cytoprotection with Asc2P was achieved in a glucose (Glc)-lacking buffer more advantageously than in a Glc-containing buffer where less efficiency had been demonstrated for Asc entry into BAE-2 cells than in a Glc-lacking buffer. Superoxide anion radicals were detected explosively in the extracellular space at 2-5 min after Reox following the Anox treatment of HUVE endotheliocytes, and were thereafter retained at levels as high as approximately one-half of the maximum level until 60 min after Reox, as shown by cytochrome c reduction assay. Superoxide anions at 3 and 60 min after Reox were suppressed by pre-Anox administration with Asc2P, but not with Asc or dehydro-Asc, and were not suppressed by post-Anox administration with Asc2P; the cytoprotection may need the intracellular accumulation of the ROS-scavenging effector Asc that is converted from Asc2P until 3 min after Reox. The ROS-generator tert-butylhydroperoxide (t-BuOOH) also induced both the diminished cell viability and nuclear DNA strand cleavages of BAE-2 endotheliocytes, which were also protected dose-dependently with Asc2P. The cytoprotection was attributed to reduction of intracellular ROS including hydroperoxide and hydrogen peroxide with Asc2P as shown by fluorometry with the redox indicator CDCFH-DA. Thus Anox/Reox-induced cell death can be prevented by Asc2P that suppresses ROS-generation immediately after Reox following Anox more efficiently in the intracellular sphere rather than in the extracellular space.  相似文献   

3.
The hierarchy of events accompanying induction of apoptosis by the microtubule inhibitor docetaxel was investigated in HL-60 human leukemia cells. Treatment of HL-60 cells with docetaxel resulted in the production of reactive oxygen species (ROS), activation of caspase-3 (-like) protease, c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activation, bcl-2 phosphorylation and apoptosis. Docetaxel elicited ROS production from NADPH oxidase as demonstrated by specific oxidase inhibitor diphenylene iodonium (DPI). ROS mediated the caspase-3 activation and apoptosis in HL-60 cells. The caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) effectively inhibited JNK/SAPK activation, bcl-2 phosphorylation and partially attenuated the ROS production induced by docetaxel. Docetaxel-induced bcl-2 phosphorylation was completely blocked by expression of dominant negative JNK or the JNK/SAPK inhibitor SP600125. Overexpression of bcl-2 partially prevented docetaxel-mediated ROS production and subsequent caspase-3 activation, thereby inhibiting apoptotic cell death. It is thus conferred that such sequent events as ROS production, caspase activation, JNK/SAPK activation, bcl-2 phosphorylation and the further generation of ROS should be parts of an amplification loop to increase caspase activity, thereby facilitating the apoptotic cell death process.  相似文献   

4.
Ketoacid oxidation in rat liver mitochondria was very sensitive to t-butyl hydroperoxide (t-BuOOH). Furthermore, 2-oxoglutarate and pyruvate each enhanced t-BuOOH-induced oxidative stresses of mitochondria, such as oxidation of pyridine nucleotides and GSH, inhibition of respiration with the other NAD-linked substrates, and peroxidation of mitochondrial lipids. We provide evidence that the t-BuOOH and ketoacid-induced effects are due to the failure of supply of NADH by 2-oxoglutarate dehydrogenase, and report the inactivation of the dehydrogenase in mitochondria by simultaneous addition of 2-oxoglutarate and t-BuOOH. Using the purified enzyme, we confirmed that t-BuOOH-induced inactivation of 2-oxoglutarate dehydrogenase was enhanced by its substrate and thiamine pyrophosphate protected the dehydrogenase from the inactivation. In contrast, succinate-dependent oxidation of mitochondria was not only scarcely affected by t-BuOOH, but also succinate protected against inactivation of 2-oxoglutarate dehydrogenase by t-BuOOH in mitochondria.  相似文献   

5.
Abstract: The protooncogene bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that the mechanism of action of Bcl-2 involves antioxidant activity. The involvement of free radicals in ischemia/reperfusion injury to neural cells has led us to investigate the effect of Bcl-2 in a model of delayed neural cell death. We have examined the survival of control and bcl-2 transfectants of a hypothalamic tumor cell line, GT1-7, exposed to potassium cyanide in the absence of glucose (chemical hypoxia/aglycemia). After 30 min of treatment, no loss of viability was evident in control or bcl-2 transfectants; however, Bcl-2-expressing cells were protected from delayed cell death measured following 24–72 h of reoxygenation. Under these conditions, the rate and extent of ATP depletion in response to treatment with cyanide in the absence of glucose and the rate of recovery of ATP during reenergization were similar in control and Bcl-2-expressing cells. Bcl-2-expressing cells were protected from oxidative damage resulting from this treatment, as indicated by significantly lower levels of oxidized lipids. Mitochondrial respiration in control but not Bcl-2-expressing cells was compromised immediately following hypoxic treatment. These results indicate that Bcl-2 can protect neural cells from delayed death resulting from chemical hypoxia and reenergization, and may do so by an antioxidant mechanism. The results thereby provide evidence that Bcl-2 or a Bcl-2 mimetic has potential therapeutic application in the treatment of neuropathologies involving oxidative stress, including focal and global cerebral ischemia.  相似文献   

6.
Pierisin-1, a 98-kDa protein that induces apoptosis in mammalian cell lines, is capable of being incorporated into cells where it ADP-ribosylates guanine residues in DNA. To investigate the apoptotic pathway induced by this unique protein, the bcl-2 gene was transfected into HeLa cells. Cy2-fluorescent pierisin-1 was incorporated into the resultant cells expressing Bcl-2 protein and ADP-ribosylated dG was detected to almost the same extent as in parent cells. However, bcl-2-transfected HeLa cells did not display apoptotic morphological changes, PARP cleavage, and DNA fragmentation, indicating acquisition of resistance. In parent HeLa cells, activation of caspase-9 and release of cytochrome c were observed after 8h treatment with 0.5ng/ml pierisin-1. Caspase substrate assays revealed further cleavage of Ac-DEVD-pNA, Ac-VDVAD-pNA, and Ac-VEID-pNA, suggesting activation of caspase-2, -3, and -6 in pierisin-1-treated HeLa cells. The caspase-3 inhibitor, Ac-DEVD-CHO, was also found to inhibit apoptosis. In contrast, this caspase activation was not observed in bcl-2-transfected HeLa cells. Our results thus indicate that pierisin-1-induced apoptosis is mediated primarily via a mitochondrial pathway involving Bcl-2 and caspases.  相似文献   

7.
Bovine aortic endothelial BAE-2 cells exposed to the peroxidizing agent, tert-butylhydroperoxide (t-BuOOH) or 2,4-nonadienal (NDE), suffered from disruption of cell membrane integrity and from reduction of mitochondrial dehydrogenase activity as assessed by fluorometry using ethidium homodimer and photometry using WST-1, respectively. The cells were protected from t-BuOOH-induced injury more markedly by L-ascorbic acid-2-O-phosphate (Asc2P) stably masked at the 2,3-enediol moiety, which is responsible for the antioxidant ability of L-ascorbic acid (Asc), than by Asc itself. In contrast, NDE-induced membrane disruption but not mitochondrial dysfunction was prevented by Asc2P, whereas Asc exhibited no prevention against both types of injury. The amount of intracellular Asc was 7.2- to 9.0-fold larger in Asc2P-administered BAE-2 cells, where the intact form Asc2P was not detected, than in Asc-administered cells as assessed by HPLC of cell extract with detection by coulometric ECD and W. During transmembrane influx into the cell, Asc2P was concentrated as highly as 70- to 90-fold relative to the extracellular Asc2P concentration, whereas Asc was 8-to 13-fold concentrated as estimated based on an intracellular water content of 0.59 pL/cell determined by [14C]PEG/gas chromatography. Thus, Asc2P but not Asc is highly concentrated in the aqueous phase of the cell after prompt dephosphorylation, and may thereby render the cell more resistant to t-BuOOH-peroxidation assumedly via scavenging of intracellular reactive oxygen species than to peroxidation with the less hydroplulic agent NDE.  相似文献   

8.
The maximum gene exhibition was shown to be achieved at 48 h after transfection with human bcl-2 (hbcl-2) genes built in an SV40 early promoter-based plasmid vector and HVJ-liposome for cultured rat hepatocytes. The similar procedure of hbcl-2 transfection was therefore conducted for livers in rats via the portal vein, and after 48 h followed by post-ischemic reperfusion (I/R) operation for some hepatic lobes. The I/R-induced hepatic injuries were in situ observed as both cell morphological degeneration and cellular DNA strand cleavages around capillary vessels of the ischemic liver lobes as detected by HE stain and TUNEL assay, and were biochemically observed as release of two hepatic marker enzymes AST and ALT into serum. All the I/R-induced injuries examined were appreciably repressed for rats transfected with hbcl-2; hbcl-2 was expressed in hepatocytes around the capillaries of ischemic regions such as the median lobe and the left lobe, but scarcely around those of non-ischemic regions. Thus cytoprotection against I/R-induced injuries may be attributed to the I/R-promoted expression of transferred hbcl-2 genes. The possibility was examined firstly by methylphenylindole method, which showed that I/R-enhanced lipid peroxidation in the reference vector-transfected livers were markedly repressed in the hbcl-2-transfected livers. Contents of ascorbic acid (Asc) in serum and livers of hbcl-2-transfected rats were enriched, unexpectedly, versus those of non-transfected rats, and were as abundant as 1.90-fold and 1.95- to 2.60-fold versus those in the pre-ischemic state, respectively. After I/R, an immediate decline in serum Asc occurred in hbcl-2-transfectants, and was followed by prompt restoration up to the pre-ischemic Asc levels in contrast to the unaltered lower Asc levels in non-transfectants except a transient delayed increase. Hepatic Asc contents were also diminished appreciably at the initial stage after I/R in the ischemic lobes of hbcl-2-transfectants, which however retained more abundant Asc versus non-transfectants especially at the initial I/R stage when scavenging of the oxidative stress should be most necessary for cytoprotection. The results showed a close correlation between cytoprotection by exogenously transferred hbcl-2 and repressive effects on the lipid peroxidation associated with Asc consumption or redistribution.  相似文献   

9.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

10.
T Ochi 《Mutation research》1989,213(2):243-248
The effects of iron chelators and glutathione (GSH) depletion on the induction of chromosomal aberrations by tert-butyl hydroperoxide (t-BuOOH) were investigated in cultured Chinese hamster V79 cells. t-BuOOH in a concentration range of 0.1-1.0 mM induced chromosomal structural aberrations, consisting mainly of chromatid gaps and breaks, in a dose-dependent fashion. The divalent iron chelator o-phenanthroline almost completely suppressed the formation of chromosomal aberrations while the trivalent chelator desferrioxamine was less effective. GSH depletion did not affect the formation of chromosomal aberrations and DNA single-strand breaks (ssb) by t-BuOOH. DNA ssb by 0.5 mM t-BuOOH were repaired within 60 min of treatment in both GSH-depleted (GSH-) and non-depleted (GSH+) cells. In contrast, chromosomal aberrations increased a little during the 60 min after treatment in both GSH- and GSH+ cells. The aberrations were then repaired in GSH+ cells but those in GSH- cells were maintained to a great extent during 20 h of post-treatment incubation. These results indicate that divalent iron mediates the induction of chromosomal aberrations by t-BuOOH. That t-BuOOH-induced chromosomal aberrations remain even after DNA ssb were repaired suggests involvement of other lesions than DNA ssb in the formation of chromosomal aberrations by the hydroperoxide.  相似文献   

11.
Abstract: Expression of the protooncogene bcl-2 inhibits both apoptotic and in some cases necrotic cell death in many cell types, including neural cells, and in response to a wide variety of inducers. The mechanism by which the Bcl-2 protein acts to prevent cell death remains elusive. One mechanism by which Bcl-2 has been proposed to act is by decreasing the net cellular generation of reactive oxygen species. To evaluate this proposal, we measured activities of antioxidant enzymes as well as levels of glutathione and pyridine nucleotides in control and bcl-2 transfectants in two different neural cell lines—rat pheochromocytoma PC12 and the hypothalamic GnRH cell line GT1-7. Both neural cell lines overexpressing bcl-2 had elevated total glutathione levels when compared with control transfectants. The ratios of oxidized glutathione to total glutathione in PC12 and GT1-7 cells overexpressing bcl-2 were significantly reduced. In addition, the NAD+/NADH ratio of bcl-2 -expressing PC12 and GT1-7 cells was two- to threefold less than that of control cell lines. GT1-7 cells overexpressing bcl-2 had the same level of glutathione peroxidase, catalase, superoxide dismutase, and glutathione reductase activities as control cells. PC12 cells overexpressing bcl-2 had a twofold increase in superoxide dismutase and catalase activity when compared with matched control transfected cells. The levels of glutathione peroxidase and glutathione reductase in PC12 cells overexpressing bcl-2 were similar to those of control cells. These results indicate that the overexpression of bcl-2 shifts the cellular redox potential to a more reduced state, without consistently affecting the major cellular antioxidant enzymes.  相似文献   

12.
Tsang WP  Chau SP  Kong SK  Fung KP  Kwok TT 《Life sciences》2003,73(16):2047-2058
Doxorubicin (DOX) is a common anticancer drug. The mechanisms of DOX induced apoptosis and the involvement of reactive oxygen species (ROS) in apoptotic signaling were investigated in p53-null human osteosarcoma Saos-2 cells. Accumulation of pre-G1 phase cells and induction of DNA laddering, which are the hallmarks of apoptosis, were detected in cells at 48 h upon DOX treatment. Furthermore, DOX increased the intracellular hydrogen peroxide and superoxide levels, followed by mitochondrial membrane depolarization, cytochrome c release, caspase-3 activation, prior to DNA laddering in Saos-2 cells. In addition, DOX treatment also upregulated Bax and downregulated Bcl-2 levels in the cells. The role of ROS in DOX induced cell death was confirmed by the suppression effect of catalase on DOX induced ROS formation, mitochondrial cytochrome c release, procaspase-3 cleavage, and apoptosis in Saos-2 cells. The catalase treatment however only suppressed DOX induced Bax upregulation but had no effect on Bcl-2 downregulation. Results from the present study suggested that ROS might act as the signal molecules for DOX induced cell death and the process is still functional even in the absence of p53.  相似文献   

13.
Plateletactivating factor (PAF) is a key mediator in pathogenesis of inflammatory bowel diseases (IBDs) but mechanisms of PAF-induced mucosal injury are poorly understood. To determine whether apoptosis and the Bcl-2-family of apoptosis regulatory gene products play a role in PAF-induced mucosal injury, we stably and conditionally overexpressed bcl-2 in rat small intestinal epithelial cells-6 under the control of a lactose-inducible promoter. Western blot analysis and immuno-histochemistry were used to verify inducible Bcl-2 and to analyze Bcl-2 and a proapoptotic member of the Bcl-2 family, Bax, subcellular distribution. DNA fragmentation was quantified by ELISA, caspase activity was measured by using fluorogenic peptide substrates, and mitochondrial membrane potential was assayed by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and fluorescence digital imaging. Bcl-2 expression was highly inducible by lactose analog isopropyl-beta-(d)-thiogalactoside (IPTG) and was localized predominantly to mitochondria. In the absence of bcl-2 overexpression and after treatment with PAF, Bax translocated to mitochondria, and mitochondrial membrane potential collapsed within 1 h, followed by caspase-3 activation, which peaked at 6 h with an ensuing DNA fragmentation maximizing at 18 h. After IPTG-induction of bcl-2 expression, PAF failed to induce DNA fragmentation, caspase-3 activation, Bax translocation, or a collapse of mitochondrial membrane potential. These data are the first to show that PAF can activate apoptotic machinery in enterocytes via a mechanism involving Bax translocation and collapse of mitochondrial membrane potential and that both of these events are under control by bcl-2 expression levels. A better understanding of the role of PAF and Bcl-2 family of apoptosis regulators in epithelial cell death might aid design of better therapeutic or preventive strategies for IBDs.  相似文献   

14.
In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H?O?), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H?O?-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H?O? could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.  相似文献   

15.
Gui D  Guo Y  Wang F  Liu W  Chen J  Chen Y  Huang J  Wang N 《PloS one》2012,7(6):e39824
Glucose-induced reactive oxygen species (ROS) production initiates podocyte apoptosis, which represents a novel early mechanism leading to diabetic nephropathy (DN). Here, we tested the hypothesis that Astragaloside IV(AS-IV) exerts antioxidant and antiapoptotic effects on podocytes under diabetic conditions. Apoptosis, albuminuria, ROS generation, caspase-3 activity and cleavage, as well as Bax and Bcl-2 mRNA and protein expression were measured in vitro and in vivo. Cultured podocytes were exposed to high glucose (HG) with 50, 100 and 200 μg/ml of AS-IV for 24 h. AS-IV significantly attenuated HG-induced podocyte apoptosis and ROS production. This antiapoptotic effect was associated with restoration of Bax and Bcl-2 expression, as well as inhibition of caspase-3 activation and overexpression. In streptozotocin (STZ)-induced diabetic rats, severe hyperglycemia and albuminuria were developed. Increased apoptosis, Bax expression, caspase-3 activity and cleavage while decreased Bcl-2 expression were detected in diabetic rats. However, pretreatment with AS-IV (2.5, 5, 10 mg·kg(-1)·d(-1)) for 14 weeks ameliorated podocyte apoptosis, caspase-3 activation, renal histopathology, podocyte foot process effacement, albuminuria and oxidative stress. Expression of Bax and Bcl-2 mRNA and protein in kidney cortex was partially restored by AS-IV pretreatment. These findings suggested AS-IV, a novel antioxidant, to prevent Glucose-Induced podocyte apoptosis partly through restoring the balance of Bax and Bcl-2 expression and inhibiting caspase-3 activation.  相似文献   

16.
Early events in Bcl-2-enhanced apoptosis   总被引:3,自引:0,他引:3  
Transfection of PC12 pheochromocytoma cells with bcl-2 potentiates apoptosis induced by the antimitotic agent, neocarzinostatin (NCS). The mechanism of potentiation involves caspase 3-dependent cleavage of Bcl-2 to its pro-apoptotic counterpart, but the cellular events proximal to caspase 3 activation in this system are not known. Two min after initiation of NCS treatment, Bax begins to translocate from cytosol to the mitochondria; the mitochondrial localization of Bax persists for 30 min after NCS treatment. At the same time, cytochrome C is released from the mitochondria to cytosol. The mitochondrial membrane potential exhibits differential change in mock- and bcl-2-transfected PC12 cells. In mock-transfected PC12 cells, the mitochondrial membrane potential increases immediately, peaks at 15 min following initiation of NCS treatment, and drops thereafter. In contrast, in bcl-2-transfected PC12 cells, the membrane potential drops immediately following NCS treatment. Caspase 9 is activated and peaks at 10 min in both mock- and bcl-2 transfected PC12 cells, however, the peak activity of caspase 9 is higher and caspase 9 activation lasts longer (30 min) after the treatment in bcl-2 transfectants. Not until 30 min after initiation of a 1 h treatment with NCS is Bcl-2 protein cleaved in bcl-2-transfected cells. Thus, in bcl-2-transfected cells, the mitochondrial membrane potential drops and cytochrome C is released from the mitochondria despite the presence of large amounts of intact mitochondrial Bcl-2. This makes it unlikely that cleavage of Bcl-2 is the only factor involved in potentiation of NCS-induced apoptosis by Bcl-2.  相似文献   

17.
18.
Recent studies indicate that caspase-2 is involved in the early stage of apoptosis before mitochondrial damage. Although the activation of caspase-2 has been shown to occur in a large protein complex, the mechanisms of caspase-2 activation remain unclear. Here we report a regulatory role of Bcl-2 on caspase-2 upstream of mitochondria. Stress stimuli, including ceramide and etoposide, caused caspase-2 activation, mitochondrial damage followed by downstream caspase-9 and -3 activation, and cell apoptosis in human lung epithelial cell line A549. When A549 cells were pretreated with the caspase-2 inhibitor benzyloxycarbonyl-Val-Asp(-OMe)-Val-Ala-Asp(-OMe)-fluoromethyl ketone or transfected with caspase-2 short interfering RNA, both ceramide- and etoposide-induced mitochondrial damage and apoptosis were blocked. Overexpression of Bcl-2 prevented ceramide- and etoposide-induced caspase-2 activation and mitochondrial apoptosis. Furthermore, caspase-2 was activated when A549 cells were introduced with Bcl-2 short interfering RNA or were treated with Bcl-2 inhibitor, which provided direct evidence of a negative regulatory effect of Bcl-2 on caspase-2. Cell survival was observed when caspase-2 was inhibited in Bcl-2-silencing cells. Blockage of the mitochondrial permeability transition pore and caspase-9 demonstrated that Bcl-2-modulated caspase-2 activity occurred upstream of mitochondria. Further studies showed that Bcl-2 was dephosphorylated at serine 70 after ceramide and etoposide treatment. A protein phosphatase inhibitor, okadaic acid, rescued Bcl-2 dephosphorylation and blocked caspase-2 activation, mitochondrial damage, and cell death. Taken together, ceramide and etoposide induced mitochondria-mediated apoptosis by initiating caspase-2 activation, which was, at least in part, regulated by Bcl-2.  相似文献   

19.
20.
ChrCrx (6-hydroxy-2, 5, 7, 8-tetramethyl-chroman-2-carboxylic acid) is a water-soluble analog in which 4', 8', 12'-trimethyltridecyl chain is deleted from an alpha-tocopherol molecule known as a hydrophobic antioxidant. Cell viability of human skin epidermal keratinocytes HaCaT was lowered by treatment with tert-butylhydroperoxide (t-BuOOH) of 50 microM for 48 h, designated as a subacute cytotoxicity, which was prevented by previous administration with ChrCrx in a dose-dependent manner as estimated by mitochondrial function-based WST-1 assay and cell morphological microscopy. In contrast an acute cytotoxicity due to treatment with t-BuOOH as dense as 200 microM for a period as short as 2 h could be also prevented with ChrCrx that was administered before and after, but was eliminated during, treatment with t-BuOOH. In contrast alpha-tocopherol was not cytoprotective against t-BuOOH. DNA strand cleavages were induced with t-BuOOH in the keratinocytes, and could be prevented by ChrCrx more effectively than alpha-tocopherol as assayed by TUNEL stain. The intracellular reactive oxygen species (ROS) was accumulated in a manner dependent on periods of t-BuOOH treatment in the cytoplasm more abundantly rather than the nucleus of keratinocytes, and was markedly diminished by ChrCrx as shown by fluorography using the redox indicator dye. Thus t-BuOOH-induced cell injuries and DNA cleavages of the keratinocytes can be prevented at least in part through efficient diminishment of ROS generated in the cytoplasm, to which the preferred distribution of ChrCrx may be advantageous over to the nucleus or membrane owing to its molecular hydrophilicity relative to alpha-tocopherol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号