首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been recently proposed that adhesion of polymorphonuclear cells (PMNs) to human umbilical vein endothelial cells leads to the disorganization of the vascular endothelial cadherin–dependent endothelial adherens junctions. Combined immunofluorescence and biochemical data suggested that after adhesion of PMNs to the endothelial cell surface, β-catenin, as well as plakoglobin was lost from the cadherin/catenin complex and from total cell lysates. In this study we present data that strongly suggest that the adhesion-dependent disappearance of endothelial catenins is not mediated by a leukocyte to endothelium signaling event, but is due to the activity of a neutrophil protease that is released upon detergent lysis of the cells.  相似文献   

2.
Two spring barley cultivars, Golden Promise and Galan, were screened for callus induction and shoot regeneration from cultured immature inflorescences. Genotype Galan have better regeneration capacity in in vitro conditions than Golden Promise.  相似文献   

3.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

4.
Wagner GJ 《Plant physiology》1981,67(3):591-593
l-[1-(14)C]Ascorbic acid was supplied to detached barley seedlings to determine the subcellular location of oxalic acid, one of its metabolic products. Intact vacuoles isolated from protoplasts of labeled leaves contained [(14)C]oxalic acid which accounted for about 70% of the intraprotoplast soluble oxalic acid. Tracer-labeled oxalate accounted for 36 and 72% of the (14)C associated with leaf vacuoles of seedlings labeled for 22 and 96 hours, respectively.  相似文献   

5.
Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.  相似文献   

6.
7.
8.
Immature barley embryos (Hordeum distichum var. Julia) of between0•20 and 0•80 mm in length, were isolated from thedeveloping grain and cultured in vitro on various culture media.The subsequent development of the embryos was followed overa period of weeks, and where germination ensued the growth rateof shoot and root meristems was compared with in vivo germinationrates. Various growth media were assessed for their abilityto support normal development of immature embryos. A numberof published media failed to support satisfactory developmentof young embryos. The addition of 1–15 per cent coconutmilk to Norstog's Medium I (mineral + vitamin solns) enhancedembryo development and lowered the threshold of viability fromembryos of 0•50 mm in length to 0•35 mm. Althoughin many cases germination ensued, embryo development was largelyabnormal. A slightly greater enhancement of growth was achievedwith 0•05–0•30 per cent casein hydrolysate asthe growth medium supplement, although abnormal developmentwas not eliminated. A further lowering of the viability thresholdto include embryos of 0•25 mm in length was obtained bycombining 2•7 mM glutamine with the casein hydrolysatesupplement. Normal development and germination of embryos assmall as O25 mm was however obtained on Norstog's Medium JJand the results were reproduced in four additional if . distichumvarieties. In each case the critical threshold of viabilitywas found to lie in embryos of 0•20–0•30 mmin length.  相似文献   

9.
10.
Synaptosomal plasma membranes (SPMs) were prepared from whole rat brain and assayed for calcium-stimulated proteolytic activity. Addition of calcium to SPMs caused a dose-dependent increase in trichloroacetic acid-soluble protein. Two peaks of protease activity directed against a casein substrate were detectable when SPMs were incubated with low-ionic-strength buffer and the extract was fractionated on DEAE-cellulose. The enzyme in peak 1 required less than 1/10 the calcium concentration for activation as the peak 2 protease (Kact1 = 35 microM; Kact2 = 500 microM). The specific thiol-protease inhibitors leupeptin and antipain and the alkylator iodoacetate blocked enzyme activity. The low-sensitivity protease was converted to a high-sensitivity enzyme (Kact = 20 microM) by substrate affinity chromatography in the presence of calcium. This protease was purified 550-fold from SPMs. The high- and low-sensitivity membrane-associated calcium-dependent proteases are part of a family of enzymes, the calpains, previously reported in cytosolic fractions of several tissues.  相似文献   

11.
At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H2O2), that it has a reduced capacity to degrade H2O2 compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.Salmonella is an important human pathogen which causes a variety of diseases, including gastroenteritis, septicemia, and typhoid fever. In the host, salmonellae reside inside phagocytic cells and are exposed to various host defense mechanisms, including oxidative stress (13). The production of superoxide anion (O2) is crucial, as individuals with chronic granulomatous disease, which is due to a defective phagocyte NADPH oxidase, are more susceptible to infections with Salmonella (10). Likewise, diminished NADPH oxidase activity leads to increased susceptibility to Salmonella in murine macrophages (20-22, 25). Superoxide anion (O2) is weakly reactive and fails to pass through the bacterial cell wall. After conversion to H2O2 by either spontaneous or enzymatic dismutation by superoxide dismutases, it readily diffuses into the bacterial cell and forms reactive hydroxyl radicals (OH) that damage macromolecules such as DNA, proteins, and lipids (12, 17).In principle, Salmonella possesses two classes of enzymes to degrade H2O2. Catalases degrade H2O2 to water and molecular oxygen independent of an additional reductant. Peroxiredoxin-type peroxidases (peroxiredoxins) reduce organic hydroperoxides to alcohols and hydrogen peroxide to water at the expense of NADH or NADPH. In a recent study by Hébrard et al., three members of the catalase family, KatG, KatE, and KatN, and two members of the peroxiredoxin family, AhpC and TsaA, were characterized in Salmonella (14). Previously it had been shown that single katE, katG, and katN Salmonella mutants did not show increased susceptibility to exogenous H2O2 (3, 24). In macrophages a katG katE katN triple mutant had no growth defect, whereas an ahpCF tsaA double mutant showed a reduced growth rate in macrophages (14). These observations point out the multiple routes that have evolved in Salmonella to protect the pathogen against oxidative stress and suggest that peroxiredoxins play a dominant role in the antioxidant defense during infection. In this study we characterized a third peroxiredoxin-type peroxidase, Tpx. Surprisingly, a simple tpx mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) was more susceptible to exogenous H2O2 than the wild type (WT). The mutant grew less well in activated macrophages and showed a reduced peroxidase activity toward H2O2.  相似文献   

12.
Tissues of barley caryopsis and seedling were examined for the protease, BAPAase, and an inhibitor. The enzyme was present in extracts of alevn-one but was absent from aleurone incubation media and extracts of: embryo with scutellum; seedling with scutellum and rootlets, and endosperm that was free of aleurone tissue. The enzyme was present in non-incubated aleurone and did not increase significantly during incubation under conditions where alpha-amylase increased in the medium and tissue. Addition of gibberellie acid produced no detectable increase in BAPAase. Extracts of endosperm had weak BAPAase-inhibitory activity; embryo or seedling extracts produced strong inhibition. The inhibitor present in these extracts was dialyzable.  相似文献   

13.
E-64-d, a membrane permeant derivative of E-64, the thiol protease inhibitor, was found to prevent meiotic maturation of mouse oocytes in a dose dependent manner. When immature mouse oocytes were incubated with E-64-d for up to 14 hr, first polar body emission was blocked to 36% at 200 μg/ml and 6% at 400 μg/ml, but germinal vesicle breakdown occurred normally. Cytological analysis revealed that meiotic spindles were not formed, while chromosome condensation occurred. Thus, E-64-d prevents oocytes from progressing to the first meiotic metaphase. When exposed to E-64-d after 8 hr of incubation without E-64-d, one-fourth of oocytes completed the first meiotic division but never progressed to the second metaphase. In three-fourth of the oocytes inhibited to emit the first polar body, spindles disappeared after incubation with E-64-d. The results suggest that E-64-d promotes disassembly of meiotic spindles resulting in inhibition of meiotic maturation. We propose that thiol protease is involved in spindle formation in mouse meiotic maturation.  相似文献   

14.
基因工程表达产物的体外酰胺化加工   总被引:5,自引:0,他引:5  
以C端为甘氨酸的修饰型人降钙素(mhCT-Gly)的融合蛋白为底物和利用重组酰胺化酶,研究建立基因工程表达产物的体外酰胺化加工系统。首先,人工合成mhCT-Gly基因,并构建其融合表达质粒pGEXCT,在大肠杆菌中获得了高效表达并通过新和层析分离纯化获得谷胱甘太S-转移酶(GST)融合蛋白(GST-mhCT-Gly)。同时,从稳定表达在鼠酰胺化酶的CHO细胞株中制备了重组酶腕化酶。然后,利用此重组  相似文献   

15.
The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 μM CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules.  相似文献   

16.
Zhang  Leike  Liu  Jia  Cao  Ruiyuan  Xu  Mingyue  Wu  Yan  Shang  Weijuan  Wang  Xi  Zhang  Huanyu  Jiang  Xiaming  Sun  Yuan  Hu  Hengrui  Li  Yufeng  Zou  Gang  Zhang  Min  Zhao  Lei  Li  Wei  Guo  Xiaojia  Zhuang  Xiaomei  Yang  Xing-Lou  Shi  Zheng-Li  Deng  Fei  Hu  Zhihong  Xiao  Gengfu  Wang  Manli  Zhong  Wu 《中国病毒学》2020,35(6):776-784
Virologica Sinica - The recent outbreak of novel coronavirus pneumonia (COVID-19) caused by a new coronavirus has posed a great threat to public health. Identifying safe and effective antivirals is...  相似文献   

17.
Inhibition of hepatic cysteine proteases by non-steroidal anti-inflammatory drug (NSAID) metabolites is implicated in several pathological conditions. It has been reported in the literature that N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen (APAP) can quickly arylate and oxidize thiol (cysteine) protease of the papain family to form an adduct in the pathogenesis of acetaminophen-induced hepatotoxicity. It was also clarified by earlier NMR studies that the 3-position of the aromatic ring (C-3) is the only site of conjugation with cysteinyl thioethers for protein arylation. In a recent study, the adduct of NAPQI has been identified and characterized by LC/MS/MS, LC/NMR and UV spectroscopy, and two possible covalent binding modes corresponding to the 2-position (model-1) and the 3 -position (model-2) of the aromatic ring of NAPQI have been proposed. The work presented here has been initiated to check the structural viability of inhibition for the two proposed adducts at the atomic level. Results of our investigation by computer-assisted molecular modeling structurally demonstrate why model-2 would be more applicable to the static x-ray structure of the complex at physiological pH. This coordinated computational and molecular biology experiment can be used for metabolic screening of NSAIDs. A combinatorial approach of this kind alleviates the doubts in interpreting the results of metabolic function and enhances our insights obtained from either computational or experimental studies alone.  相似文献   

18.
Experiments conducted to determine the effects of leupeptin,a specific inhibitor of thiol proteinase, on extractable nitratereductase (NR) activity in leaves of Hordeum distichum duringdarkness revealed that leupeptin (0.01 mg.ml–1) appliedto detached leaves significantly reduced the loss of NR activity.At the same time it also reduced the formation of small cytochromec reductase species, which is a degradation product of NR complex,Upon nitrate induction, extractable NR activity increased butthe content of thiol proteinase decreased. This inverse correlationwas also observed upon transfer of nitrate-grown barley seedlingsto nitrate-free nutrient solution. Furthermore, cycloheximide(0.1 mg.ml–1) treatment of barley seedlings reduced thecontent of thiol proteinase and retarded the loss of NR activityunder noninducing conditions. These results suggest that invivo changes in NR content in leaves of Hordeum distichum arethe result of proteolysis by an endogenous thiol proteinase. (Received May 16, 1985; Accepted July 22, 1985)  相似文献   

19.
Endonuclease VII is a Holliday-structure resolving enzyme ofphage T4 which cleaves at junctions of branched DNAs and atmispairings. In extension of these findings we report the following:i) Endonuclease VII can discriminate between a large heteroduplexloop and a TT mismatch arranged in tandem, 6 nt distant fromeach other, in the same heteroduplex molecule. The enzyme cleavestwo nucleotides 3' from the base of the loop or the TT mismatch.ii) Similar to its reactions with mismatches cleavage of heteroduplexloops by endonucleave VII can also initiate correction of perfectdouble-strandedness by T4 DNA polymerase and T4 DNA-ligase invitro. Loops of 8 nt and 20 nt were repaired efficiently. iii)For the first time endonuclease VII cleavage sites were alsomapped in single-stranded DNA if it was part of the 20-nt loop.This suggests that looping of single-stranded DNA can induceformation of secondary structures, which are recognizable byendonuclease VII.  相似文献   

20.
ABT-378, a new human immunodeficiency virus type 1 (HIV-1) protease inhibitor which is significantly more active than ritonavir in cell culture, is currently under investigation for the treatment of AIDS. Development of viral resistance to ABT-378 in vitro was studied by serial passage of HIV-1 (pNL4-3) in MT-4 cells. Selection of viral variants with increasing concentrations of ABT-378 revealed a sequential appearance of mutations in the protease gene: I84V-L10F-M46I-T91S-V32I-I47V. Further selection at a 3.0 μM inhibitor concentration resulted in an additional change at residue 47 (V47A), as well as reversion at residue 32 back to the wild-type sequence. The 50% effective concentration of ABT-378 against passaged virus containing these additional changes was 338-fold higher than that against wild-type virus. In addition to changes in the protease gene, sequence analysis of passaged virus revealed mutations in the p1/p6 (P1′ residue Leu to Phe) and p7/p1 (P2 residue Ala to Val) gag proteolytic processing sites. The p1/p6 mutation appeared in several clones derived from early passages and was present in all clones obtained from passage P11 (0.42 μM ABT-378) onward. The p7/p1 mutation appeared very late during the selection process and was strongly associated with the emergence of the additional change at residue 47 (V47A) and the reversion at residue 32 back to the wild-type sequence. Furthermore, this p7/p1 mutation was present in all clones obtained from passage P17 (3.0 μM ABT-378) onward and always occurred in conjunction with the p1/p6 mutation. Full-length molecular clones containing protease mutations observed very late during the selection process were constructed and found to be viable only in the presence of both the p7/p1 and p1/p6 cleavage-site mutations. This suggests that mutation of these gag proteolytic cleavage sites is required for the growth of highly resistant HIV-1 selected by ABT-378 and supports recent work demonstrating that mutations in the p7/p1/p6 region play an important role in conferring resistance to protease inhibitors (L. Doyon et al., J. Virol. 70:3763–3769, 1996; Y. M. Zhang et al., J. Virol. 71:6662–6670, 1997).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号