首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hierarchically porous nitrogen‐doped carbon (HPC)/polyaniline (PANI) nanowire arrays nanocomposites are synthesized by a facile in situ polymerization. 3D interconnected honeycomb‐like HPC was prepared by a cost‐effective route via one‐step carbonization using urea and alkali‐treated wheat flour as carbon precursor with a high specific surface area (1294 m2 g?1). The specific capacitances of HPC and HPC/PANI (with a surface area of 923 m2 g?1) electrode are 383 and 1080 F g?1 in 1 m H2SO4, respectively. Furthermore, an asymmetric supercapacitor based on HPC/PANI as positive electrode and HPC as negative electrode is successfully assembled with a voltage window of 0–1.8 V in 1 m Na2SO4 aqueous electrolyte, exhibiting high specific capacitance (134 F g?1), high energy density (60.3 Wh kg?1) and power density (18 kW kg?1), and excellent cycling stability (91.6% capacitance retention after 5000 cycles).  相似文献   

2.
Novel guar gum-g-poly(sodium acrylate)/rectorite (GG-g-PNaA/REC) superabsorbent nanocomposites were prepared in aqueous solution using guar gum (GG), partially neutralized acrylic acid (NaA), acidified rectorite (H+-REC) and organified rectorite (CTA+-REC) by cetyltrimethylammonium bromide (CTAB) as raw materials, ammonium persulfate (APS) as initiator and N,N′-methylenebisacrylamide (MBA) as crosslinker. FTIR spectra confirmed that NaA had been grafted onto GG chains and the OH groups of REC participated in polymerization reaction. Exfoliated nanocomposite was obtained for H+-REC and intercalated structure was formed for CTA+-REC as shown by XRD results. SEM observations show REC has been uniformly dispersed in polymeric matrix. Effects of HCl concentration, organification degree of CTA+-REC and content of REC on swelling capabilities were investigated and the swelling kinetics of nanocomposites was evaluated. Results indicate that modifying REC by acidification and organification can improve swelling properties of the resultant nanocomposites, and GG-g-PNaA/CTA+-REC exhibited higher swelling capability and swelling rate contrast to GG-g-PNaA/H+-REC.  相似文献   

3.
Magnetic nanoparticles, covered by a polymeric hydrophilic nanolayer containing reactive amino groups, were obtained via Hoffman degradation of the polyacrylamide-coated Fe3O4 nanoparticles synthesized by photochemical in situ polymerization, and then conjugated the model enzyme––α-chymotrypsin (CT) by use of EDC· HCl and NHS at room temperatures. The mechanism of photochemical in situ polymerization was briefly proposed in this paper. Superparamagnetic properties were retained for Fe3O4 after enzyme immobilization while slightly reducing the value of saturation magnetization. Crystalline structure of Fe3O4 after CT immobilization was consistent with that of the freshly prepared Fe3O4 by X-ray diffraction (XRD) analysis. The binding capacity was 69 and 61 mg enzyme/g nanogel determined by thermogravimetric (TG) analysis and by standard BCA protein assay, respectively. Specific activity of the immobilized CT was 0.93 U/(mg min), only 59.3% as that of free CT. Thermal stability of CT was improved after being bound to the amine-functionalized magnetic nanogel.  相似文献   

4.
Sodium ion batteries (NIBs) have become attractive promising alternatives to lithium ion batteries in a broad field of future energy storage applications. The development of high‐performance anode materials has become an essential factor and a great challenge toward satisfying the requirements for NIBs, advancement. This work is the first report on GeS2 nanocomposites uniformly distributed on reduced graphene oxide (rGO) as promising anode materials for NIBs prepared via a facile hydrothermal synthesis and a unique carbo‐thermal annealing. The results show that the GeS2/rGO hybrid anode yields a high reversible specific capacity of 805 mA h g?1 beyond the theoretical capacity, an excellent rate capability of 616 mA h g?1 at 5 A g?1, and a cycle retention of 89.4% after 100 cycles. A combined ex situ characterization study reveals that the electrochemically driven amorphization plays a key role in achieving efficient sodium storage by accommodating excess sodium ions in the electrode materials. Understanding the sequential conversion‐alloying reaction mechanism for GeS2/rGO hybrid anodes provides a new approach for developing high‐performance energy storage applications.  相似文献   

5.
Uniform molecular imprinting microspheres were prepared using precipitation polymerization with thifensulfuron‐methyl (TFM) as template, acrylamide as functional monomer and ethylene glycol dimethacrylate as cross‐linker. TFM could be selectively adsorbed on the molecularly imprinted polymers (MIPs) matrix through the hydrogen bonding interaction and the adsorbed TFM could be sensed by its strikingly enhancing effect on the weak chemiluminescence (CL) reaction between luminol and hydrogen peroxide. On this basis, a novel CL sensor for the determination of TFM using MIPs as recognition elements was established. The logarithm of net CL intensity (ΔI) is linearly proportional to the logarithm of TFM concentration (C) in the range from 1.0 × 10?9 to 5.0 × 10?5 mol L?1 with a detection limit of 8.3 × 10?10 mol L?1 (3σ). The results demonstrated that the MIP–CL sensor was reversible and reusable and that it could strikingly improve the selectivity and sensitivity of CL analysis. Furthermore, it is suggested that the CL enhancement of luminol–H2O2 by TFM might be ascribed to the enhancement effect of CO2, which came from TFM hydrolysis in basic medium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis of in situ polymer‐functionalized anatase TiO2 particles using an anchoring block copolymer with hydroxamate as coordinating species is reported, which yields nanoparticles (≈11 nm) in multigram scale. Thermal annealing converts the polymer brushes into a uniform and homogeneous carbon coating as proven by high resolution transmission electron microscopy and Raman spectroscopy. The strong impact of particle size as well as carbon coating on the electrochemical performance of anatase TiO2 is demonstrated. Downsizing the particles leads to higher reversible uptake/release of sodium cations per formula unit TiO2 (e.g., 0.72 eq. Na+ (11 nm) vs only 0.56 eq. Na+ (40 nm)) while the carbon coating improves rate performance. The combination of small particle size and homogeneous carbon coating allows for the excellent electrochemical performance of anatase TiO2 at high (134 mAh g?1 at 10 C (3.35 A g?1)) and low (≈227 mAh g?1 at 0.1 C) current rates, high cycling stability (full capacity retention between 2nd and 300th cycle at 1 C) and improved coulombic efficiency (≈99.8%).  相似文献   

7.
Abstract

In the present study, cotton fabric nanocomposites with in situ generated copper nanoparticles (CuNPs) were prepared using Cassia alata leaf extract as reducing agent. The prepared cotton fabric nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscoy (SEM) techniques. The cotton fabric nanocomposites exhibited significant antibacterial activity against Escherichia coli bacteria. These nanocomposites retained the antibacterial activity even after 15 washes indicating the generation of permanent CuNPs in them. The antibacterial activity of the nanocomposites prepared even in sewerage water was also studied. The obtained results suggest that the cotton fabric nanocomposites with in situ generated CuNPs can be considered for medical and water treatment applications.  相似文献   

8.
In the present study, we report the preparation of semi interpenetrating hydrogel networks (SIHNs) based on cross-linked poly (acrylamide) prepared through an optimized rapid redox-solution polymerization with N,N′-methylenebisacrylamide (MBA) in presence of three different carbohydrate polymers, namely gum acacia (GA), carboxymethylcellulose (CMC) and starch (SR). Highly stable and uniformly distributed silver nanoparticles have been obtained with hydrogel networks as nanoreactors via in situ reduction of silver nitrate (AgNO3) using sodium borohydride (NaBH4) as reducing agent. The formation of silver nanoparticles has been confirmed with ultraviolet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) provides the amounts of silver nanoparticles exist in the hydrogel networks. Transmission electron microscopy (TEM) results demonstrate that acacia employed hydrogels have regulated the silver nanoparticles size to 2–5 nm where as CMC and starch composed hydrogel networks result in a heterogeneous size from 2 to 20 nm. The preliminary antibacterial activity performed to these hydrogel–silver nanocomposites.  相似文献   

9.
In this study CdS-Ag2S nanocomposites for antibacterial activity were synthesized via facile co-precipitation method using PVP as capping agent. The prepared nanocomposites have particle sizes in the range of 50–100 nm (SEM) and PVP addition has good influence on the morphology of nanocomposites. The antimicrobial activity of pure Ag2S, CdS and CdS-Ag2S composites was evaluated against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. The results demonstrate that antibacterial activity was significantly improved due to increasing ratio of CdS into CdS-Ag2S nanocomposites in comparison to pure Ag2S and CdS.  相似文献   

10.
The asymmetric synthesis polymerization or “enantiogenic” polymerization of some meso oxiranes, cis-dimethyloxirane (cis-DMO) and cyclohexene oxide (CHO), and thiiranes, cis-dimethylthiirane (cis-DMT) and cyclohexene sulfide (CHS), initiated with different chiral systems was examined. Strong differences in behaviour were observed between oxiranes and thiiranes depending on the initiator used. The initiators based on ZnEt2 or CdMe2 and a chiral diol give optically active polymers from meso thiiranes but fail to induce an asymmetric polymer synthesis with meso oxiranes. A new chiral initiator based on ZnEt2 and (1S,2R)-ephedrine allowed us to prepare optically active poly CHOs, which can be fractionated into fractions exhibiting opposite optical activities. © 1992 Wiley-Liss, Inc.  相似文献   

11.
Chiral ligand-exchange enantioseparation of aliphatic and aromatic amino acids was successfully performed using a new open-tubular zwitterionic column with tentacle-type polymer stationary phase. The polymeric stationary phase was prepared using 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl), a new reactive monomer. The preparation procedure of the open-tubular column included silanization, in situ graft polymerization with HPMA-Cl, and l-histidine (l-His) modification. l-His was used as a chiral ligand-exchange selector and copper(II) as a central ion. Successful enantioseparation of six pairs of amino acid enantiomers was achieved with a buffer of 5 mM CuSO4, 20 mM (NH4)2SO4 at pH 3.0.  相似文献   

12.
Nickel sulfides are regarded as promising anode materials for advanced rechargeable lithium‐ion batteries due to their high theoretical capacity. However, capacity fade arising from significant volume changes during operation greatly limits their practical applications. Herein, confined NiSx@C yolk–shell microboxes are constructed to address volume changes and confine the active material in the internal void space. Having benefited from the yolk–shell structure design, the prepared NiSx@C yolk–shell microboxes display excellent electrochemical performance in lithium‐ion batteries. Particularly, it delivers impressive cycle stability (460 mAh g?1 after 2000 cycles at 1 A g?1) and superior rate performance (225 mAh g?1 at 20 A g?1). Furthermore, the lithium storage mechanism is ascertained with in situ synchrotron high‐energy X‐ray diffractions and in situ electrochemical impedance spectra. This unique confined yolk–shell structure may open up new strategies to create other advanced electrode materials for high performance electrochemical storage systems.  相似文献   

13.
Polymerization of 1,4-dioxan-2-one was carried out more detailed with immobilized lipase CA as the catalyst. The effect of the enzyme amount, reaction temperature and water content on polymerization was investigated, respectively. Both the conversion of monomer and the Mv of poly(1,4-dioxan-2-one) increased with the increase of enzyme amount, and maximized at 80 °C. At the beginning of polymerization, water molecules act as initiators. As the reaction time increased, linear condensation had gradually became dominant and water was released into the reaction system. Excess water may act as a chain cleavage agent. To obtain poly(1,4-dioxan-2-one) with an ideal molecular weight, polymerization of 1,4-dioxan-2-one was conducted by adding solvent and MS to reaction system, and product with a higher molecular weight (Mv = 58,000) was gained.  相似文献   

14.
In this study, we investigated the preparation of polysaccharide supramolecular films through the formation of inclusion complexes by amylose in vine-twining polymerization using carboxymethyl cellulose-graft-poly(?-caprolactone) (CMC-g-PCL) as a new guest polymer. First, hydrogels were prepared by phosphorylase-catalyzed enzymatic polymerization in the presence of CMC-g-PCL according to the vine-twining polymerization manner. The XRD result of a powdered sample obtained by lyophilization of the resulting hydrogel indicated the presence of inclusion complexes of amylose with the PCL graft-chains between intermolecular (CMC-g-PCL)s, which acted as supramolecular cross-linking points for the hydrogelation. Then, the supramolecular films were obtained by adding water to the powdered samples, followed by drying. The mechanical properties of the selected films examined by tensile testing were superior to those of a CMC film. The effect of the supramolecular cross-linking structures on the mechanical properties of the films was evaluated further by several investigations.  相似文献   

15.
Modern electronics and electrical systems demand efficient operation of dielectric polymer‐based capacitors at high electric fields and elevated temperatures. Here, polyimide (PI) dielectric composites prepared from in situ polymerization in the presence of inorganic nanofillers are reported. The systematic manipulation of the dielectric constant and bandgap of the inorganic fillers, including Al2O3, HfO2, TiO2, and boron nitride nanosheets, reveals the dominant role of the bandgap of the fillers in determining and improving the high‐temperature capacitive performance of the polymer composites, which is very different from the design principle of the dielectric polymer composites operating at ambient temperature. The Al2O3‐ and HfO2‐based PI composites with concomitantly large bandgap and moderate dielectric constants exhibit substantial improvement in the breakdown strength, discharged energy density, and charge–discharge efficiency when compared to the state‐of‐the‐art dielectric polymers. The work provides a design paradigm for high‐performance dielectric polymer nanocomposites for electrical energy storage at elevated temperatures.  相似文献   

16.
Herein, this study successfully fabricates porous g‐C3N4‐based nanocomposites by decorating sheet‐like nanostructured MnOx and subsequently coupling Au‐modified nanocrystalline TiO2. It is clearly demonstrated that the as‐prepared amount‐optimized nanocomposite exhibits exceptional visible‐light photocatalytic activities for CO2 conversion to CH4 and for H2 evolution, respectively by ≈28‐time (140 µmol g?1 h?1) and ≈31‐time (313 µmol g?1 h?1) enhancement compared to the widely accepted outstanding g‐C3N4 prepared with urea as the raw material, along with the calculated quantum efficiencies of ≈4.92% and 2.78% at 420 nm wavelength. It is confirmed mainly based on the steady‐state surface photovoltage spectra, transient‐state surface photovoltage responses, fluorescence spectra related to the produced ?OH amount, and electrochemical reduction curves that the exceptional photoactivities are comprehensively attributed to the large surface area (85.5 m2 g?1) due to the porous structure, to the greatly enhanced charge separation and to the introduced catalytic functions to the carrier‐related redox reactions by decorating MnOx and coupling Au‐TiO2, respectively, to modulate holes and electrons. Moreover, it is suggested mainly based on the photocatalytic experiments of CO2 reduction with isotope 13CO2 and D2O that the produced ?CO2 and ?H as active radicals would be dominant to initiate the conversion of CO2 to CH4.  相似文献   

17.
A new class of hybrid molecules containing cinnamide subunit linked to benzophenone as inhibitors of tubulin polymerization were synthesized and evaluated for their anticancer potential. These hybrids exhibit anticancer activity with IC50 values ranging from 0.06 to 16.3 μM. Compounds 4f and 4g possessing fluoro and trifluoromethyl on the cinnamido subunit showed significant cytotoxic activity with IC50 values 0.06 and 0.09 μM against HeLa cell line, respectively. These compounds showed cell cycle arrest at G2/M phase of the cell cycle and inhibited tubulin polymerization followed by activation of caspase-3 activity and apoptotic cell death. Further in vitro tubulin polymerization assay showed that the level of tubulin inhibition was comparable to that of 2a for the compounds 4f and 4g. Moreover, Hoechst 33258 staining and DNA fragmentation assay suggested that these compounds induce cell death by apoptosis. Overall, the current study demonstrates that the synthesis of benzophenone linked cinnamide subunit conjugates as promising anticancer agents with G2/M arrest and apoptotic-inducing ability via targeting tubulin.  相似文献   

18.
19.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

20.
The polymerization of proteins can create newly active and large bio‐macromolecular assemblies that exhibit unique functionalities depending on the properties of the building block proteins and the protein units in polymers. Herein, the first enzymatic polymerization of horseradish peroxidase (HRP) is reported. Recombinant HRPs fused with a tyrosine‐tag (Y‐tag) through a flexible linker at the N‐ and/or Ctermini are expressed in silkworm, Bombyx mori. Trametes sp. laccase (TL) is used to activate the tyrosine of Y‐tagged HRPs with molecular O2 to form a tyrosyl‐free radical, which initiates the tyrosine coupling reaction between the HRP units. A covalent dityrosine linkage is also formed through a HRP‐catalyzed self‐crosslinking reaction in the presence of H2O2. The addition of H2O2 in the self‐polymerization of Y‐tagged HRPs results in lower activity of the HRP polymers, whereas TL provides site‐selectivity, mild reaction conditions and maintains the activity of the polymeric products. The cocrosslinking of Y‐tagged HRPs and HRP‐protein G (Y‐HRP‐pG) units catalyzed by TL shows a higher signal in enzyme‐linked immunosorbent assay (ELISA) than the genetically pG‐fused HRP, Y‐HRP‐pG, and its polymers. This new enzymatic polymerization of HRP promises to provide highly active and functionalized polymers for biomedical applications and diagnostics probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号