首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The traditional approach to understanding invasions has focused on properties of the invasive species and of the communities that are invaded. A well‐established concept is that communities with higher species diversity should be more resistant to invaders. However, most recently published field data contradict this theory, finding instead that areas with high native plant diversity also have high exotic plant diversity. An alternative environment‐based approach to understanding patterns of invasions assumes that native and exotic species respond similarly to environmental conditions, and thus predicts that they should have similar patterns of abundance and diversity. Establishment and growth of native and exotic species are predicted to vary in response to the interaction of plant growth rates with the frequency and intensity of mortality‐causing disturbances. This theory distinguishes between the probability of establishment and the probability of dominance, predicting that establishment should be highest under unproductive and undisturbed conditions and also disturbed productive conditions. However, the probability of dominance by exotic species, and thus of potential negative impacts on diversity, is highest under productive conditions. The theory predicts that a change in disturbance regime can have opposite effects in environments with contrasting levels of productivity. Manipulation of productivity and disturbance provides opportunities for resource managers to influence the interactions among species, offering the potential to reduce or eliminate some types of invasive species.  相似文献   

2.
Aim The diversity–productivity relationship is a controversial issue in ecology. Diversity is sometimes seen to increase with productivity but a unimodal relationship has often been reported. Competitive exclusion was cited initially to account for the decrease of diversity at high productivity. Subsequently, the roles of evolutionary history (species pool size) and dispersal rate have been acknowledged. We explore how the effects of species pool, dispersal and competition combine to produce different diversity–productivity relationships. Methods We use a series of simulations with a spatially explicit, individual‐based model. Following empirical expectations, we used four scenarios to characterize species pool size along the productivity gradient (uniformly low and high, linear increase and unimodal). Similarly, the dispersal rate varied along the productivity gradient (uniformly low and high, and unimodal). We considered both neutral communities and communities with competitive exclusion. Results and main conclusions Our model predicts that competitive interactions will result in unimodal diversity–productivity relationships. The model often predicts unimodal patterns in neutral communities as well, although the decline in richness at high productivity is less than in competing communities. A positive diversity–productivity relationship is simulated for neutral communities when the species pool size increases with productivity and the dispersal rate is high. This scenario is probably more widespread in nature than the others since positive diversity–productivity relationships have been observed more frequently than previously expected, especially in the tropics and for woody species. Our simulated effects of species pool, dispersal and competition on diversity patterns can be linked to empirical observations to uncover mechanisms behind the diversity–productivity relationship.  相似文献   

3.
Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.  相似文献   

4.
Species diversity of microfungal communities in decaying oak leaves was analyzed based on the hyphal growth rates of the component species. Dominant species of a low-diversity community had faster hyphal growth rates, while dominant species of a high-diversity community had slower growth rates. These results implies that when the faster growing species became dominant, these species exhausted resources rapidly during the initial stage of fungal colonization. This exclusive utilization of resources made it impossible for other species to invade the substratum and led to a low diversity. Hyphal growth rates played an important role in determining the diversity of microfungal communities.  相似文献   

5.
Population and community responses of phytoplankton to fluctuating light   总被引:5,自引:0,他引:5  
Elena Litchman 《Oecologia》1998,117(1-2):247-257
Light is a major resource in aquatic ecosystems and has a complex pattern of spatio-temporal variability, yet the effects of dynamic light regimes on communities of phytoplankton are largely unexplored. I examined whether and how fluctuating light supply affects the structure and dynamics of phytoplankton communities. The effect of light fluctuations was tested at two average irradiances: low, 25 μmol quanta m−2 s−1 and high, 100 μmol quanta m−2 s−1 in 2- and 18-species communities of freshwater phytoplankton. Species diversity, and abundances of individual species and higher taxa, depended significantly on both the absolute level and the degree of variability in light supply, while total density, total biomass, and species richness responded only to light level. In the two-species assemblage, fluctuations increased diversity at both low and high average irradiances and in the multispecies community fluctuations increased diversity at high irradiance but decreased diversity at low average irradiance. Species richness was higher under low average irradiance and was not affected by the presence or absence of fluctuations. Diatom abundance was increased by fluctuations, especially at low average irradiance, where they became the dominant group, while cyanobacteria and green algae dominated low constant light and all high light treatments. Within each taxonomic group, however, there was no uniform pattern in species responses to light fluctuations: both the magnitude and direction of response were species-specific. The temporal regime of light supply had a significant effect on the growth rates of individual species grown in monocultures. Species responses to the regime of light supply in monocultures qualitatively agreed with their abundances in the community experiments. The results indicate that the temporal regime of light supply may influence structure of phytoplankton communities by differentially affecting growth rates and mediating species competition. Received: 24 September 1997 / Accepted: 8 July 1998  相似文献   

6.
Water-column mixing is known to have a decisive impact on plankton communities. The underlying mechanisms depend on the size and depth of the water body, nutrient status and the plankton community structure, and they are well understood for shallow polymictic and deep stratified lakes. Two consecutive mixing events of similar intensity under different levels of herbivory were performed in enclosures in a shallow, but periodically stratified, eutrophic lake, in order to investigate the effects of water-column mixing on bacteria abundance, phytoplankton abundance and diversity, and rotifer abundance and fecundity. When herbivory by filter-feeding zooplankton was low, water-column mixing that provoked a substantial nutrient input into the euphotic zone led to a strong net increase of bacteria and phytoplankton biomass. Phytoplankton diversity was lower in the mixed enclosures than in the undisturbed ones because of the greater contribution of a few fast-growing species. After the second mixing event, at a high biomass of filter-feeding crustaceans, the increase of phytoplankton biomass was lower than after the first mixing, and diversity remained unchanged because enhanced growth of small fast-growing phytoplankton was prevented by zooplankton grazing. Bacterial abundance did not increase after the second mixing, when cladoceran biomass was high. Changes in rotifer fecundity indicated a transmission of the phytoplankton response to the next trophic level. Our results suggest that water-column mixing in shallow eutrophic lakes with periodic stratification has a strong effect on the plankton community via enhanced nutrient availability rather than resuspension or reduced light availability. This fuels the basis of the classic and microbial food chain via enhanced phytoplankton and bacterial growth, but the effects on biomass may be damped by high levels of herbivory. Received: 3 May 1999 / Accepted: 13 April 2000  相似文献   

7.
Global patterns of plant diversity   总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

8.
Rachel I. Adams  Mark Vellend 《Oikos》2011,120(10):1584-1594
Recent studies in community genetics have demonstrated strong effects of intraspecific genetic variation on the diversity of interacting species but largely ignored the potential for effects of species diversity on genetic diversity, which could also create a positive correlation between these two levels of biodiversity. Here we investigated the role that species diversity of competitors could play in shaping the genotypic diversity of a focal species, using a modified version of an existing model of grass–clover dynamics. We simulated communities in which clover genotypes varied in their relative competitive ability when growing adjacent to different grass species. Under many parameter combinations, communities with greater species richness of grasses retained greater genotypic richness within the clover population. Increasing grass species richness effectively increased biotic environmental heterogeneity with respect to clover growth, thereby promoting the maintenance of genotypic diversity. This result depended on three conditions being met: (1) a sufficiently strong tradeoff among genotypes in their fitness when growing with different grass species, (2) partial de‐coupling of competition and facilitation, with grass and clover capable of sharing microsites rather than strictly excluding one another, and (3) sufficiently high rates of clover growth and clonal spread, which allowed clover genotypes to ‘track’ the shifting mosaic of grass species. Our results demonstrate that species diversity can act as an important promoter of genotypic diversity, and they provide testable predictions concerning the conditions that promote this outcome in nature.  相似文献   

9.
Coral species richness: ecological versus biogeographical influences   总被引:3,自引:0,他引:3  
Species richness in communities varies with habitat area, productivity, disturbance level, intensity of species interactions, and regional/historical effects. All of these factors influence coral richness but their effects vary with spatial scale, position on the reef, and regional location. Species richness of corals along depth gradients shows a unimodal, hump-shaped curve that peaks at intermediate depths. Moreover, the peak of the curve is higher in regions with larger species pools. This “regional enrichment” of the local community appears in line transect samples as small as 10 m in length. The pattern suggests that ecological factors operating over scales of tens of meters and regional/historical factors operating over thousands of kilometers can both affect local richness. Regional factors probably include differences in speciation relative to extinction rates among regions and proximity of local sites to richness hotspots. Plausible factors operating at the local scale are species interactions, disturbance, and productivity which combine in different ways to produce the unimodal pattern. Shallow areas support few species because extinction rates are high due to frequent disturbance or because of environmental extremes. In addition, high productivity encourages rapid growth and thus the potential for intense interspecific competition. In areas where branching acroporids are abundant, exclusion by these dominant competitors is possible. Deep areas may be depauperate because few species can tolerate the low light levels found there. Areas of intermediate depth have the richest communities because they are open for colonization by many species and because extinction rates are low. Several theories may explain this “openness” and species persistence: 1. Occasional disturbance coupled with low growth rates results in glacially slow exclusion by the dominant competitor. 2. Aggregation of corals creates spatial variation in the intensity of competition and thus refuges from competition within a spatial landscape. Inferior competitors persist because they are superior at dispersal and refuge colonization. 3. Specialist predators focus on high-density juvenile populations near the parent, creating ecological space for colonization by non-prey. 4. Coral competitive abilities are roughly equal and recruitment into the community is a probabilistic event. The community thus exhibits random drift and exclusion is an extremely lengthy process. Based upon empirical evidence, these theories are listed in order of plausibility, but still need to be rigorously tested. Accepted: 9 September 1999  相似文献   

10.
The ecological drivers of herbaceous layer composition and diversity in deciduous forests of eastern North America are imperfectly understood. We analyzed the herbaceous layer, across the growing season, in a central Appalachian old-growth forest to examine dynamics, diversity, and relationships to resource gradients. We found clear variation in herb species composition over the growing season. We identified intermingled resource gradients, including soil nutrients, light availability, and topography, that were related to herbaceous composition. We found that herb layer diversity was different among previously identified tree communities, but was not variable over the growing season. We identified a unimodal relationship between diversity and productivity in the herb flora that held throughout the growing season despite changing composition and levels of productivity. Diversity and distributions in the herbaceous community of our study site are linked to a complex of resource gradients.  相似文献   

11.
Microbial communities in fluctuating environments, such as oceans or the human gut, contain a wealth of diversity. This diversity contributes to the stability of communities and the functions they have in their hosts and ecosystems. To improve stability and increase production of beneficial compounds, we need to understand the underlying mechanisms causing this diversity. When nutrient levels fluctuate over time, one possibly relevant mechanism is coexistence between specialists on low and specialists on high nutrient levels. The relevance of this process is supported by the observations of coexistence in the laboratory, and by simple models, which show that negative frequency dependence of two such specialists can stabilize coexistence. However, as microbial populations are often large and fast growing, they evolve rapidly. Our aim is to determine what happens when species can evolve; whether evolutionary branching can create diversity or whether evolution will destabilize coexistence. We derive an analytical expression of the invasion fitness in fluctuating environments and use adaptive dynamics techniques to find that evolutionarily stable coexistence requires a special type of trade-off between growth at low and high nutrients. We do not find support for the necessary evolutionary trade-off in data available for the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae on glucose. However, this type of data is scarce and might exist for other species or in different conditions. Moreover, we do find evidence for evolutionarily stable coexistence of the two species together. Since we find this coexistence in the scarce data that are available, we predict that specialization on resource level is a relevant mechanism for species diversity in microbial communities in fluctuating environments in natural settings.  相似文献   

12.
Soil biota could have a significant impact on plant productivity and diversity through benefiting plants and mediating plant–plant interaction. However, it is poorly understood how soil biotic factors interaction with abiotic environments affect plant community diversity and composition. Here, we investigate the community‐level consequences of arbuscular mycorrhizal fungi (AMF) interactions with multiple nutrients and their ecological stoichiometry. We conducted a greenhouse experiment manipulating nitrogen (N) and phosphorus (P) to create soil nutrient availability and N:P gradients for microcosm communities with and without AMF. We found that AMF suppressed plant diversity at low P levels, whereas it did not alter the diversity at high P levels because of trade‐offs in the abundance of the dominant and subordinate species. AMF reduced plant diversity at the intermediate N:P ratios, while AMF did not affect the diversity at low and high N:P ratios. P addition decreased the mycorrhizal contribution to community productivity, whereas N addition reduced the negative effects of AMF on productivity at high P levels. AMF decreased community productivity at low N:P ratios but increased it at high N:P ratios. AMF increased the stoichiometric homoeostasis of plant communities, which was positively correlated with the stability of productivity under variations in soil N:P ratios. Our study demonstrates that both resource availability and stoichiometry influence the effect of AMF on plant community productivity and diversity and suggests that AMF may increase the stability of plant communities under variations in the soil nutrients by increasing the stoichiometric homoeostasis of the plant community.  相似文献   

13.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

14.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

15.
《Acta Oecologica》2007,31(3):419-425
Semi-natural grassland communities are of great interest in conservation because of their high species richness. These communities are being threatened by both land abandonment and nitrogen eutrophication, and their continued existence will depend upon correct management. However, there is a distinct lack of studies of the ecological mechanisms that regulate species diversity and productivity in Mediterranean grasslands. We have conducted a 3-year field experiment in a species-poor grassland in central Italy to investigate the effects of nitrogen fertilization coupled with removal of plant litter and artificial cutting on species diversity and community productivity. Vegetation cutting reduced living biomass but increased species diversity. In fact, cutting had positive effects on the cover of almost all of the annual and biennial species, while it had a negative effect on the dominant perennial grasses Brachypodium rupestre and Dactylis glomerata. Litter removal had similar effects to cutting, although it was far less effective in increasing species diversity. In contrast, nitrogen enrichment strongly increased the living biomass while maintaining very low species diversity. Our results have indicated that semi-natural Mediterranean grasslands need specific management regimes for maintenance and restoration of species diversity. In the management of these grasslands, attention should be paid to the potential threat from nitrogen enrichment, especially when coupled with land abandonment.  相似文献   

16.
This study examined two models that are most frequently used to describe the relationship between species richness and productivity (SPR): monotonic positive and hump‐shaped models. We assessed zooplankton community diversity in response to algal productivity. The relationship between net primary productivity (NPP) and rarefied species richness was examined by fitting the data to two models and comparing them using the Akaike information criterion (AICc). Macrophyte banks with the highest net primary productivity had the highest zooplankton abundance. Our results pointed to a hump‐shaped model as the best fit to describe the relationship between zooplankton species richness and primary productivity (ΔAICc > 4). Thus, the diversity was lower at the extremes of productivity and higher at intermediate levels of productivity. We suggest that this relationship might occur because when the resource supply rates are low, environmental conditions are stressful, whereas a high availability of resources enhances competitive exclusion. Two observations supported this statement: (i) the total abundance of the community positively correlated with NPP (P < 0.05), indicating that less productive sites had few consumers and the raised productivity tended to favour the total abundance; (ii) NPP was negatively correlated with evenness (P < 0.05), indicating that productivity increased the dominance of certain species in the communities. Therefore, we challenged two of the models most frequently used to explain SPR, and discuss some mechanisms underlying a hump‐shaped SPR.  相似文献   

17.
Jeremy W. Fox 《Oikos》2008,117(8):1153-1164
When do initial conditions, which reflect the assembly history of a community, affect the final community state? Comparative field studies and recent theory suggest that initial conditions matter at high productivity, because uninvasible alternate stable states and assembly cycles are more likely at high productivity. However, this prediction and the mechanisms behind it have not been tested experimentally. An alternative hypothesis is that initial conditions are relatively unimportant, and that communities generally are comprised of species with appropriate traits, which might vary with productivity. I assembled communities of protists and rotifers in laboratory microcosms from a species‐rich, trophically‐diverse species pool using all possible combinations of two initial conditions and four productivity levels. After communities approached their final states, invasions by the species that initially failed to persist tested the invasibility of those final states and tested for assembly cycles. I also examined how local (within‐microcosm) diversity and regional diversity (total species richness of all microcosms of a given productivity level) varied with productivity. Comparative field work has used such scale‐dependent diversity–productivity relationships as evidence for effects of assembly history. Productivity had a modest effect on final pre‐invasion species composition, while initial conditions had a very weak effect. Most invasions failed, and the frequency of successful invasions and of post‐invasion extinctions did not vary with productivity. Instead, species that were present most frequently pre‐invasion were also the most successful invaders, and the least‐likely species to go extinct post‐invasion. Local and regional richness did not vary substantially with productivity. Overall, the results suggest that final communities are predictably comprised of species with appropriate traits, and are not an unpredictable outcome of initial conditions.  相似文献   

18.
Semi-natural grassland communities are of great interest in conservation because of their high species richness. These communities are being threatened by both land abandonment and nitrogen eutrophication, and their continued existence will depend upon correct management. However, there is a distinct lack of studies of the ecological mechanisms that regulate species diversity and productivity in Mediterranean grasslands. We have conducted a 3-year field experiment in a species-poor grassland in central Italy to investigate the effects of nitrogen fertilization coupled with removal of plant litter and artificial cutting on species diversity and community productivity. Vegetation cutting reduced living biomass but increased species diversity. In fact, cutting had positive effects on the cover of almost all of the annual and biennial species, while it had a negative effect on the dominant perennial grasses Brachypodium rupestre and Dactylis glomerata. Litter removal had similar effects to cutting, although it was far less effective in increasing species diversity. In contrast, nitrogen enrichment strongly increased the living biomass while maintaining very low species diversity. Our results have indicated that semi-natural Mediterranean grasslands need specific management regimes for maintenance and restoration of species diversity. In the management of these grasslands, attention should be paid to the potential threat from nitrogen enrichment, especially when coupled with land abandonment.  相似文献   

19.
Aims Nitrogen (N) and phosphorus (P) constitute essential elements for plant growth and their availability influence species diversity in herbaceous plant communities. Legumes exhibit relatively high abundance in N-limited soils. Moreover, the legumes' N:P ratios are much higher than those of the other plant species grown in the same site, probably because they are able to fix atmospheric N 2. The objective of this study was to determine how the relative proportion in N and P availability and the restriction of legumes to fix atmospheric N 2 affect: (i) the primary productivity of plant species, (ii) species composition and (iii) N and P concentrations of species.Methods In an outdoor experiment, mixtures containing grasses, legumes and non-legume forbs were established in 32 containers under four soil treatments (control, N addition, P addition and disinfected soil), in a completely randomized design with eight replicates. Plant growth was examined when N and P were limited in the control soil:sand mixture, in a pot experiment sown with Plantago lanceolata .Important findings The pot experiment indicated that both N and P were limiting for the growth of P. lanceolata. Soil treatments affected primary productivity and species composition. Legumes had a relatively high abundance in the control and their growth was favoured, especially that of Medicago sativa, by P addition. Grasses' growth was increased by the addition of N. Inhibition of rhizobia resulted in poor growth of legumes and concomitant higher growth of grasses, in comparison to the control. The N:P ratios of non-legume species differed between treatments and were always higher in the legume species, even in the disinfected soil. The latter provides evidence that the high N concentrations found in legumes are a physiological characteristic of this specific group of plants.  相似文献   

20.
We studied the temporal variability and resistance to perturbation of the biomass production of grassland communities from an experimental diversity gradient (the Portuguese BIODEPTH project site). With increasing species richness relative temporal variability (CV) of plant populations increased but that of communities decreased, supporting the insurance hypothesis and related theory. Species‐rich communities were more productive than species‐poor communities in all three years although a natural climatic perturbation in the third year (frequent frost and low precipitation) caused an overall decrease in biomass production. Resistance to this perturbation was constant across the experimental species richness gradient in relative terms, supporting a similar response from the Swiss BIODEPTH experiment. The positive biomass response was generated by different combinations of the complementarity and selection effects in different years. Complementarity effects were positive across mixtures on average in all three years and positively related to diversity in one season. The complementarity effect declined following perturbation in line with total biomass but, counter to predictions, in relative terms overyielding was maintained in all years. Selection effects were positively related to diversity in one year and negative overall in the other two years. The response to perturbation varied among species and for the same species growing in monoculture and mixture, but following the frost communities were more strongly dominated by species with lower monoculture biomass and the selection effect was more negative. In total, our results support previous findings of a positive relationship between diversity and productivity and between diversity and the temporal stability of production, but of no effect of diversity on the resistance to perturbation. We demonstrate for the first time that the relative strength of overyielding remained constant during an exceptional natural environmental perturbation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号