首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Contemporary theoretical models used in describing electrostatic properties of amino acids in polypeptides rely usually on atomic point charges. Recently noted defects of such models in reproducing protein folding originate from the inadequate representation of the electrostatic term, in particular inability of atomic charges to account for local anisotropy of molecular charge distribution. Such defects could be corrected by multicenter multipole moments derived directly from any high quality quantum chemical wavefunctions. This is illustrated by comparison of monopole and multipole electrostatic interactions between some amino acids within glutathione S-transferase.High quality Point Charge Models (PCM) can be derived analytically from multipole moment databases. Preliminary results suggest that torsional potentials are controlled by electrostatic interactions of atomic multipoles.Examples illustrating various uses of multicenter multipole moment databases of protein building blocks in modeling various properties of amino acids and polypeptides have been described, including calculation of molecular electrostatic potentials, electric fields, interactions between amino acid residues, estimates of pKa shifts and changes in catalytic activity induced by amino acid substitutions in mutated enzymes.  相似文献   

2.
Contrary to the widespread view that hydrogen bonding and its entropy effect play a dominant role in protein folding, folding into helical and hairpin-like structures is observed in molecular dynamics (MD) simulations without hydrogen bonding in the peptide-solvent system. In the widely used point charge model, hydrogen bonding is calculated as part of the interaction between atomic partial charges. It is removed from these simulations by setting atomic charges of the peptide and water to zero. Because of the structural difference between the peptide and water, van der Waals (VDW) interactions favor peptide intramolecular interactions and are a major contributing factor to the structural compactness. These compact structures are amino acid sequence dependent and closely resemble standard secondary structures, as a consequence of VDW interactions and covalent bonding constraints. Hydrogen bonding is a short range interaction and it locks the approximate structure into the specific secondary structure when it is included in the simulation. In contrast to standard molecular simulations where the total energy is dominated by charge-charge interactions, these simulation results will give us a new view of the folding mechanism.  相似文献   

3.
4.
Recognition of poly(C) DNA and RNA sequences in mammalian cells is achieved by a subfamily of the KH (hnRNP K homology) domain-containing proteins known as poly(C)-binding proteins (PCBPs). To reveal the molecular basis of poly(C) sequence recognition, we have determined the crystal structure, at 1.7-A resolution, of PCBP2 KH1 in complex with a 7-nucleotide DNA sequence (5'-AACCCTA-3') corresponding to one repeat of the human C-rich strand telomeric DNA. The protein-DNA interaction is mediated by the combination of several stabilizing forces including hydrogen bonding, electrostatic interactions, van der Waals contacts, and shape complementarities. Specific recognition of the three cytosine residues is realized by a dense network of hydrogen bonds involving the side chains of two conserved lysines and one glutamic acid. The co-crystal structure also reveals a protein-protein dimerization interface of PCBP2 KH1 located on the opposite side of the protein from the DNA binding groove. Numerous stabilizing protein-protein interactions, including hydrophobic contacts, stacking of aromatic side chains, and a large number of hydrogen bonds, indicate that the protein-protein interaction interface is most likely genuine. Interaction of PCBP2 KH1 with the C-rich strand of human telomeric DNA suggests that PCBPs may participate in mechanisms involved in the regulation of telomere/telomerase functions.  相似文献   

5.
We recently developed a polarizable atomic multipole refinement method assisted by the AMOEBA force field for macromolecular crystallography. Compared to standard refinement procedures, the method uses a more rigorous treatment of x-ray scattering and electrostatics that can significantly improve the resultant information contained in an atomic model. We applied this method to high-resolution lysozyme and trypsin data sets, and validated its utility for precisely describing biomolecular electron density, as indicated by a 0.4-0.6% decrease in the R- and Rfree-values, and a corresponding decrease in the relative energy of 0.4-0.8 Kcal/mol/residue. The re-refinements illustrate the ability of force-field electrostatics to orient water networks and catalytically relevant hydrogens, which can be used to make predictions regarding active site function, activity, and protein-ligand interaction energies. Re-refinement of a DNA crystal structure generates the zigzag spine pattern of hydrogen bonding in the minor groove without manual intervention. The polarizable atomic multipole electrostatics model implemented in the AMOEBA force field is applicable and informative for crystal structures solved at any resolution.  相似文献   

6.
7.
The near ultraviolet chiroptical properties of L -cystine conformational isomers are examined on a static, “one-electron” model in which the disulfide moiety is the chromophoric group and the atoms of the L -alanyl fragments are treated as perturbers. The zeroth order chromophoric wave functions are calculated on a semiempirical molecular orbital model in which excited states are constructed in the virtual orbital-configuration interaction approximation. The perturbing environment is represented by point charges located at the atomic centers of the L -alanyl fragments. Chromophore–perturber interactions are expressed as charge–multipole moments with only the charge–dipole and charged–quadrupole terms being retained in the calculations. Vicinal contributions to the rotatory strengths of the five lowest energy disulfide transitions are computed for 30 conformational isomers of the L -cystine dizwitterion. The results provide support for the view that vicinal or peripheral effects can account entirely for the observed near ultraviolet (λ > 230 nm) chiroptical properties of L -cystine and its derivatives and that these properties are diagnostic of conformational features external to the disulfide moiety.  相似文献   

8.
This report examines the molecular mechanism by which high-fidelity DNA polymerases select nucleotides during the replication of an abasic site, a non-instructional DNA lesion. This was accomplished by synthesizing several unique 5-substituted indolyl 2'-deoxyribose triphosphates and defining their kinetic parameters for incorporation opposite an abasic site to interrogate the contributions of π-electron density and solvation energies. In general, the K(d, app) values for hydrophobic non-natural nucleotides are ~10-fold lower than those measured for isosteric hydrophilic analogs. In addition, k(pol) values for nucleotides that contain less π-electron densities are slower than isosteric analogs possessing higher degrees of π-electron density. The differences in kinetic parameters were used to quantify the energetic contributions of desolvation and π-electron density on nucleotide binding and polymerization rate constant. We demonstrate that analogs lacking hydrogen-bonding capabilities act as chain terminators of translesion DNA replication while analogs with hydrogen bonding functional groups are extended when paired opposite an abasic site. Collectively, the data indicate that the efficiency of nucleotide incorporation opposite an abasic site is controlled by energies associated with nucleobase desolvation and π-electron stacking interactions whereas elongation beyond the lesion is achieved through a combination of base-stacking and hydrogen-bonding interactions.  相似文献   

9.
To obtain better insights into the dynamic nature of hydrogen bonding, computer graphics representations were introduced as an aid for the analysis of molecular dynamics trajectories. A schematic representation of hydrogen bonding patterns is generated to reflect the frequency and the type of hydrogen bonding occurring during the simulation period. Various trajectory plots for monitoring geometrical parameters and for analyzing three-center hydrogen bonding were also generated. The methods proposed are applicable to a variety of biopolymers. In this study, hydrogen bonding in the d(G) · d(C)6 system was examined. For the nucleic acid fragments examined, three-center hydrogen bonds can be classified as in-plane and major or minor groove types. The in-plane three-center hydrogen bond represents a stable state in which both bonds simultaneously satisfy the relaxed hydrogen bonding criteria for a measurable period. On the other hand, groove three-center hydrogen bonds behave as a transient intermediate state in a flip-flop hydrogen bonding system.  相似文献   

10.
Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions.  相似文献   

11.
12.
In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15–313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (VE) and the deviation in isentropic compressibility (Δκs) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich–Kister polynomial equation. It was observed that for all studied systems, the VE and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7.  相似文献   

13.
14.
The X-ray crystallographic coordinate data of a 56 DNA double helical oligomers were examined, using the molecular modeling program STR3DI32.EXE, in order to ascertain the aromatic statuses of the Watson-Crick hydrogen bonded base pairs. Several oligomers that were intercalated with anthraquinoid molecules (like the daunomycin and nogalamycin aglycones) were also included in the study in order to evaluate the aromatic statuses of the intercalated entities. This study revealed that the base pairs were aromatic in their Watson-Crick hydrogen bonded double helices, whereas they are known to be non-aromatic in situations in which they are not involved in Watson-Crick hydrogen bonding. The resonance energy gained by the aromatization of these bases, while engaged in Watson-Crick hydrogen bonding, must contribute to the stability of these DNA double helices. The anthraquinoid intercalates were revealed to be in their radical anion form, having received an electron from one of the bases between which these intercalates were sited. These anthraquinoid intercalates are therefore "held" in position by ionic - charge transfer - interactions, as well as hydrogen bonding due to their glycosidic entities. These observations are also relevant to investigations of the electrical conductivity of DNA double helices that are similarly intercalated.  相似文献   

15.
BackgroundDenaturants, namely, urea and guanidinium chloride (GdmCl) affect the stability as well as structure of DNA. Critical assessment of the role of hydrogen bonding of these denaturants with the different regions of DNA is essential in terms of its stability and structural aspect. However, the understanding of the mechanistic aspects of structural change of DNA induced by the denaturants is not yet well understood.MethodsIn this study, various spectroscopic along with molecular dynamics (MD) simulation techniques were employed to understand the role of hydrogen bonding of these denaturants with DNA bases in their stability and structural change.Results and conclusionIt has been found that both, GdmCl and urea intrude into groove region of DNA by striping surrounding water. The hydrogen bonding pattern of Gdm+ and urea with DNA bases in its groove region is multimodal and distinctly different from each other. The interaction of GdmCl with DNA is stabilized by electrostatic interaction whereas electrostatic and Lennard-Jones interactions both contribute for urea. Gdm+ forms direct hydrogen bond with the bases in the minor groove of DNA whereas direct and water assisted hydrogen bond takes place with urea. The hydrogen bond formed between Gdm+ with bases in the groove region of DNA is stronger than urea due to strong electrostatic interaction along with less self-aggregation of Gdm+ than urea. The distinct hydrogen bonding capability of Gdm+ and urea with DNA bases in its groove region affects its width differently. The interaction of Gdm+ decreases the width of the minor and major groove which probably increases the strength of hydrogen bond between the Watson-Crick base pairs of DNA leading to its stability. In contrast, the interaction of urea does not affect much to the width of the grooves except the marginal increase in the minor groove width which probably decreases the strength of hydrogen bond between Watson Crick base pairs leading to the destabilization of DNA.General significanceOur study clearly depicts the role of hydrogen bonding between DNA bases and denaturants in their stability and structural change which can be used further for designing of the guanidinium based drug molecules.  相似文献   

16.
The Structure of DNA within Cationic Lipid/DNA Complexes   总被引:2,自引:0,他引:2       下载免费PDF全文
The structure of DNA within CLDCs used for gene delivery is controversial. Previous studies using CD have been interpreted to indicate that the DNA is converted from normal B to C form in complexes. This investigation reexamines this interpretation using CD of model complexes, FTIR as well as Raman spectroscopy and molecular dynamics simulations to address this issue. CD spectra of supercoiled plasmid DNA undergo a significant loss of rotational strength in the signal near 275 nm upon interaction with either the cationic lipid dimethyldioctadecylammonium bromide or 1,2-dioleoyltrimethylammonium propane. This loss of rotational strength is shown, however, by both FTIR and Raman spectroscopy to occur within the parameters of the B-type conformation. Contributions of absorption flattening and differential scattering to the CD spectra of complexes are unable to account for the observed spectra. Model studies of the CD of complexes prepared from synthetic oligonucleotides of varying length suggest that significant reductions in rotational strength can occur within short stretches of DNA. Furthermore, some alteration in the hydrogen bonding of bases within CLDCs is indicated in the FTIR and Raman spectroscopy results. In addition, alterations in base stacking interactions as well as hydrogen bonding are suggested by molecular dynamics simulations. A global interpretation of all of the data suggests the DNA component of CLDCs remains in a variant B form in which base/base interactions are perturbed.  相似文献   

17.
Hydrogen bonding interactions are one of the most important single factors in protein-ligand interactions and molecular recognition. To probe the energetics of the interactions, we have analyzed the binding of 1-deoxy-, 2-deoxy- and 6-fluoro-6-deoxy- analogues of D-galactose (Gal) to a primary high-affinity periplasmic receptor for monosaccharide active transport. Kd values and atomic structures refined at 1.81 to 1.45 A resolution of the complexes have been determined and compared with those of Gal binding. With binding site residues and the bound modified sugars in nearly identical positions as found in the complex with Gal, the binding of 1-deoxy-Gal or 2-deoxy-Gal reflects the overall contribution of 1.8 kcal mol-1 per hydrogen bond (neutral-charge type) to the affinity of Gal. Neglected in these estimates is the contribution of van der Waals' forces that accompany the formation of hydrogen bonds with each sugar hydroxyl. Contrary to expectations, the 6-fluoro-6-deoxy analogue proved to be an inadequate probe of Gal OH6 as a hydrogen bond donor due to the binding of a new water molecule and structural changes arising from the electronegative fluoro group. This study sheds new light on the energetics of protein-ligand interactions and the use of engineered ligands in assessing these interactions.  相似文献   

18.
DNA and RNA are known to have different structural properties. In the present study, molecular dynamics (MD) simulations on a series of RNA and DNA duplexes indicate differential structural flexibility for the two classes of oligonucleotides. In duplex RNA, multiple base pairs experienced local opening events into the major groove on the nanosecond time scale, while such events were not observed in the DNA simulations. Three factors are indicated to be responsible for the base opening events in RNA: solvent-base interactions, 2'OH(n)-O4'(n+1) intra-strand hydrogen bonding, and enhanced rigid body motion of RNA at the nucleoside level. Water molecules in the major groove of RNA contribute to initiation of base pair opening. Stabilization of the base pair open state is due to a 'conformational switch' comprised of 2'OH(n)-O4'(n+1) hydrogen bonding and a rigid body motion of the nucleoside moiety in RNA. This rigid body motion is associated with decreased flexibility of the glycosyl linkage and sugar moieties in A-form structures. The observed opening rates in RNA are consistent with the imino proton exchange experiments for AU base pairs, although not for GC base pairs, while structural and flexibility changes associated with the proposed conformational switch are consistent with survey data of RNA and DNA crystal structures. The possible relevance of base pair opening events in RNA to its many biological functions is discussed.  相似文献   

19.
5-Guanidino-4-nitroimidazole (NI), derived from guanine oxidation by reactive oxygen and nitrogen species, contains an unusual flexible ring-opened structure, with nitro and guanidino groups which possess multiple hydrogen bonding capabilities. In vitro primer extension experiments with bacterial and mammalian polymerases show that NI incorporates C as well as A and G opposite the lesion, depending on the polymerase. To elucidate structural and thermodynamic properties of the mutagenic NI lesion, we have investigated the structure of the modified base itself and the NI-containing nucleoside with high-level quantum mechanical calculations and have employed molecular modeling and molecular dynamics simulations in solution for the lesion in B-DNA duplexes, with four partner bases opposite the NI. Our results show that NI adopts a planar structure at the damaged base level. However, in the nucleoside and in DNA duplexes, steric hindrance between the guanidino group and its linked sugar causes NI to be nonplanar. The NI lesion can adopt both syn and anti conformations on the DNA duplex level, with the guanidino group positioned in the DNA major and minor grooves, respectively; the specific preference depends on the partner base. On the basis of hydrogen bonding and stacking interactions, groove dimensions, and bending, we find that the least distorted NI-modified duplex contains partner C, consistent with observed incorporation of C opposite NI. However, hydrogen bonding interactions between NI and partner G or A are also found, which would be compatible with the observed mismatches.  相似文献   

20.
The computer molecular modeling program HINT (Hydropathic INTeractions), an empirical hydropathic force field function that includes hydrogen bonding, coulombic and hydrophobic terms, was used to study sequence-selective doxorubicin binding/intercalation in the 64 unique CAxy, CGxy, TAxy, TGxy base pair quartet combinations. The CAAT quartet sequence is shown to have the highest binding score of the 64 combinations. Of the two regularly alternating polynucleotides, d(CGCGCG)2and d(TATATA)2, the HINT calculated binding scores reveal doxorubicin binds preferentially to d(TATATA)2. Although interactions of the chromophore with the DNA base pairs defining the intercalation site [I-1] [I+1] and the neighboring [I+2] base pair are predominant, the results obtained with HINT indicate that the base pair [I+3] contributes significantly to the sequence selectivity of doxorubicin by providing an additional hydrogen bonding opportunity for the N3' ammonium of the daunosamine sugar moiety in approximately 25% of the sequences. This observation, that interactions involving a base pair [I+3] distal to the intercalation site play a significant role in stabilizing/destabilizing the intercalation of doxorubicin into the various DNA sequences, has not been previously reported. In general terms, this work shows that molecular modeling and careful analysis of molecular interactions can have a significant role in designing and evaluating nucleotides and antineoplastic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号