首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dugan AS  Eash S  Atwood WJ 《Journal of virology》2005,79(22):14442-14445
BK virus (BKV) is a common human polyomavirus infecting >80% of the population worldwide. Infection with BKV is asymptomatic, but reactivation in renal transplant recipients can lead to polyomavirus-associated nephropathy. In this report, we show that enzymatic removal of alpha(2,3)-linked sialic acid from cells inhibited BKV infection. Reconstitution of asialo cells with alpha(2,3)-specific sialyltransferase restored susceptibility to infection. Inhibition of N-linked glycosylation with tunicamycin reduced infection, but inhibition of O-linked glycosylation did not. An O-linked-specific alpha(2,3)-sialyltransferase was unable to restore infection in asialo cells. Taken together, these data indicate that an N-linked glycoprotein containing alpha(2,3)-linked sialic acid is a critical component of the cellular receptor for BKV.  相似文献   

2.
Adeno-associated virus serotype 4 (AAV4) and AAV5 have different tropisms compared to AAV2 and to each other. We recently reported that alpha 2--3 sialic acid is required for AAV5 binding and transduction. In this study, we characterized AAV4 binding and transduction and found it also binds sialic acid, but the specificity is significantly different from AAV5. AAV4 can hemagglutinate red blood cells from several species, whereas AAV5 hemagglutinates only rhesus monkey red blood cells. Treatment of red blood cells with trypsin inhibited hemagglutination for both AAV4 and AAV5, suggesting that the agglutinin is a protein. Treatment of Cos and red blood cells with neuraminidases also indicated that AAV4 bound alpha 2--3 sialic acid. However, resialylation experiments with neuraminidase-treated red blood cells demonstrated that AAV4 binding required alpha 2--3 O-linked sialic acid, whereas AAV5 required N-linked sialic acid. Similarly, resialylation of sialic acid-deficient CHO cells supported this same conclusion. The difference in linkage specificity for AAV4 and AAV5 was confirmed by binding and transduction experiments with cells incubated with either N-linked or O-linked inhibitors of glycosylation. Furthermore, AAV4 transduction was only blocked with soluble alpha 2-3 sialic acid, whereas AAV5 could be blocked with either alpha 2--3 or alpha 2-6 sialic acid. These results suggest that AAV4 and AAV5 require different sialic acid-containing glycoproteins for binding and transduction of target cells and they further explain the different tropism of AAV4 and AAV5.  相似文献   

3.
Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-β-D-galactopyranosyl-β-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.  相似文献   

4.
We previously used directed evolution in human airway epithelia to create adeno-associated virus 2.5T (AAV2.5T), a highly infectious chimera of AAV2 and AAV5 with one point mutation (A581T). We hypothesized that the mechanism for its increased infection may be a higher binding affinity to the surface of airway epithelia than its parent AAV5. Here, we show that, like AAV5, AAV2.5T, uses 2,3N-linked sialic acid as its primary receptor; however, AAV2.5T binds to the apical surface of human airway epithelia at higher levels and has more receptors than AAV5. Furthermore, its binding affinity is similar to that of AAV5. An alternative hypothesis is that AAV2.5T interaction with 2,3N-linked sialic acid may instead be required for cellular internalization. Consistent with this, AAV2.5T binds but fails to be internalized by CHO cells that lack surface expression of sialic acid. Moreover, whereas AAV2.5T binds similarly to human (rich in 2,3N-linked sialic acid) and pig airway epithelia (2,6N-linked sialic acid), significantly more virus was internalized by human airway. Subsequent transduction correlated with the level of internalized rather than surface-bound virus. We also found that human airway epithelia internalized significantly more AAV2.5T than AAV5. These data suggest that AAV2.5T has evolved to utilize specific 2,3N-linked sialic acid residues on the surface of airway epithelia that mediate rapid internalization and subsequent infection. Thus, sialic acid serves as not just an attachment factor but is also required for AAV2.5T internalization, possibly representing an important rate-limiting step for other viruses that use sialic acids.  相似文献   

5.
For the human polyomaviruses JC virus (JCV) and BK virus (BKV), the first step to a successful infection involves binding to sialic acid moieties located on the surfaces of host cells. By stripping and then reconstituting specific sialic acid linkages on host cells, we show that JCV uses both α(2,3)-linked and α(2,6)-linked sialic acids on N-linked glycoproteins to infect cells. For both JCV and BKV, the sialic acid linkages required for cell surface binding directly correlate with the linkages required for infection. In addition to sialic acid linkage data, these data suggest that the third sugar from the carbohydrate chain terminus is important for virus binding and infection.  相似文献   

6.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

7.
Oligosaccharides as receptors for JC virus   总被引:1,自引:0,他引:1       下载免费PDF全文
JC virus (JCV) belongs to the polyomavirus family of double-stranded DNA viruses and in humans causes a demyelinating disease of the central nervous system, progressive multifocal leukoencephalopathy. Its hemagglutination activity and entry into host cells have been reported to depend on an N-linked glycoprotein containing sialic acid. In order to identify the receptors of JCV, we generated virus-like particles (VLP) consisting of major viral capsid protein VP1. We then developed an indirect VLP overlay assay to detect VLP binding to glycoproteins and a panel of glycolipids. We found that VLP bound to sialoglycoproteins, including alpha1-acid glycoprotein, fetuin, and transferrin receptor, and that this binding depended on alpha2-3-linked sialic acids and N-linked sugar chains. Neoglycoproteins were synthesized by using ovalbumin and conjugation with oligosaccharides containing the terminal alpha2-3- or alpha2-6-linked sialic acid or the branched alpha2-6-linked sialic acid. We show that the neoglycoprotein containing the terminal alpha2-6-linked sialic acid had the highest affinity for VLP, inhibited the hemagglutination activity of VLP and JCV, and inhibited the attachment of VLP to cells. We also demonstrate that VLP bound to specific glycolipids, such as lactosylceramide, and gangliosides, including GM3, GD2, GD3, GD1b, GT1b, and GQ1b, and that VLP bound weakly to GD1a but did not bind to GM1a, GM2, or galactocerebroside. Furthermore, the neoglycoprotein containing the terminal alpha2-6-linked sialic acid and the ganglioside GT1b inhibited JCV infection in the susceptible cell line IMR-32. These results suggest that the oligosaccharides of glycoproteins and glycolipids work as JCV receptors and may be feasible as anti-JCV agents.  相似文献   

8.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

9.
Adeno-associated virus (AAV) is a promising vector for gene transfer in cystic fibrosis. AAV4 and AAV5 both bind to the apical surface of differentiated human airway epithelia, but only AAV5 infects. Both AAV4 and AAV5 require 2,3-linked sialic acid for binding. However, AAV5 interacts with sialic acid on N-linked carbohydrates, whereas AAV4 interacts with sialic acid on O-linked carbohydrates. Because mucin is decorated with O-linked carbohydrates, we hypothesized that mucin binds AAV4 and inhibits gene transfer. To evaluate the effect of secreted mucin, we studied mucin binding and gene transfer to COS cells and the basolateral membrane of well differentiated human airway epithelia. AAV4 bound mucin more efficiently than AAV5, and mucin inhibited gene transfer with AAV4. Moreover, O-glycosidase-pretreated mucin did not block gene transfer with AAV4. Similar to secreted mucin, the transmembrane mucin MUC1 inhibited gene transfer with AAV4 but not AAV5. MUC1 inhibited AAV4 by blocking internalization of the virus. Thus, O-linked carbohydrates of mucin are potent inhibitors of AAV4. Furthermore, whereas mucin plays an important role in innate host defense, its activity is specific; some vectors or pathogens are more resistant to its effects.  相似文献   

10.
A lectin from the fruiting body of the Psathyrella velutina mushroom (PVL) was found to bind specifically to N-acetylneuraminic acid, as well as to GlcNAc (Ueda, H., Kojima, K., Saitoh, T., and Ogawa, H. (1999) FEBS Lett. 448, 75-80). In this study, the glycan sequences that PVL recognizes with high affinity on sialoglycoproteins were revealed. Among sialic acid-specific lectins only PVL could reveal the sialylated N-acetyllactosamine structure of glycoproteins in blotting studies, based on the dual specificity. The affinity of PVL to fetuin was measured by surface plasmon resonance to be 10(7) m(-1), which is an order of magnitude higher than those of Sambucus nigra agglutinin and Maackia amurensis mitogen, whereas affinity to asialofetuin was approximately 0 and to asialo-agalactofetuin was 10(8) m(-1), suggesting that PVL exhibits remarkably high affinities toward glycoproteins possessing trisialo- or GlcNAc-exposed glycans. Transferrin was separated into fractions that correspond to the sialylation states on an immobilized PVL column. Transferrin-possessing trisialoglycans containing alpha2,3-linked N-acetylneuraminic acid on the beta1,4-linked GlcNAc branch bound to the PVL column and eluted with GlcNAc; those containing only alpha2,6-linked sialic acids were retarded, whereas other transferrin fractions passed through the column. These results indicate that PVL is a lectin with potential for separation and detection of sialoglycoproteins because of its dual specificity toward sialoglycans and GlcNAc exposed glycans.  相似文献   

11.
We have previously shown that costimulation of endothelial cells with IL-1 + IL-4 markedly inhibits VCAM-1-dependent adhesion under flow conditions. We hypothesized that sialic acids on the costimulated cell surfaces may contribute to the inhibition. Northern blot analyses showed that Gal beta 1-4GlcNAc alpha 2, 6-sialyltransferase (ST6N) mRNA was up-regulated in cultured HUVEC by IL-1 or IL-4 alone, but that the expression was enhanced by costimulation, whereas the level of Gal beta 1-4GlcNAc/Gal beta 1-3GalNAc alpha2,3-sialyltransferase (ST3ON) mRNA was unchanged. Removing both alpha 2,6- and alpha 2,3-linked sialic acids from IL-1 + IL-4-costimulated HUVEC by sialidase significantly increased VCAM-1-dependent adhesion, whereas removing alpha 2,3-linked sialic acid alone had no effect; adenovirus-mediated overexpression of ST6N with costimulation almost abolished the adhesion, which was reversible by sialidase. The same treatments of IL-1-stimulated HUVEC had no effect. Lectin blotting showed that VCAM-1 is decorated with alpha 2,6- but not alpha 2,3-linked sialic acids. However, overexpression of alpha 2,6-sialyltransferase did not increase alpha 2,6-linked sialic acid on VCAM-1 but did increase alpha 2,6-linked sialic acids on other proteins that remain to be identified. These results suggest that alpha 2,6-linked sialic acids on a molecule(s) inducible by costimulation with IL-1 + IL-4 but not IL-1 alone down-regulates VCAM-1-dependent adhesion under flow conditions.  相似文献   

12.
Influenza viruses of the H2N2 subtype have not circulated among humans in over 40 years. The occasional isolation of avian H2 strains from swine and avian species coupled with waning population immunity to H2 hemagglutinin (HA) warrants investigation of this subtype due to its pandemic potential. In this study we examined the transmissibility of representative human H2N2 viruses, A/Albany/6/58 (Alb/58) and A/El Salvador/2/57 (ElSalv/57), isolated during the 1957/58 pandemic, in the ferret model. The receptor binding properties of these H2N2 viruses was analyzed using dose-dependent direct glycan array-binding assays. Alb/58 virus, which contains the 226L/228S amino acid combination in the HA and displayed dual binding to both alpha 2,6 and alpha 2,3 glycan receptors, transmitted efficiently to naïve ferrets by respiratory droplets. Inefficient transmission was observed with ElSalv/57 virus, which contains the 226Q/228G amino acid combination and preferentially binds alpha 2,3 over alpha 2,6 glycan receptors. However, a unique transmission event with the ElSalv/57 virus occurred which produced a 226L/228G H2N2 natural variant virus that displayed an increase in binding specificity to alpha 2,6 glycan receptors and enhanced respiratory droplet transmissibility. Our studies provide a correlation between binding affinity to glycan receptors with terminal alpha 2,6-linked sialic acid and the efficiency of respiratory droplet transmission for pandemic H2N2 influenza viruses.  相似文献   

13.
Recently, we showed that porcine sialoadhesin (pSn) mediates internalization of the arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) in alveolar macrophages (Vanderheijden et al., J. Virol. 77:8207-8215, 2003). In rodents and humans, sialoadhesin, or Siglec-1, has been described as a macrophage-restricted molecule and to specifically bind sialic acid moieties. In the current study, we investigated whether pSn is a sialic acid binding protein and, whether so, whether this property is important for its function as a PRRSV receptor. Using untreated and neuraminidase-treated sheep erythrocytes, we showed that pSn binds sialic acid. Furthermore, pSn-specific monoclonal antibody 41D3, which blocks PRRSV infection, inhibited this interaction. PRRSV attachment to and infection of porcine alveolar macrophages (PAM) were both shown to be dependent on the presence of sialic acid on the virus: neuraminidase treatment of virus but not of PAM blocked infection and reduced attachment. Enzymatic removal of all N-linked glycans on the virus with N-glycosidase F reduced PRRSV infection, while exclusive removal of nonsialylated N-linked glycans of the high-mannose type with endoglycosidase H had no significant effect. Free sialyllactose and sialic acid containing (neo)glycoproteins reduced infection, while lactose and (neo)glycoproteins devoid of sialic acids had no significant effect. Studies with linkage-specific neuraminidases and lectins indicated that alpha2-3- and alpha2-6-linked sialic acids on the virion are important for PRRSV infection of PAM. From these results, we conclude that pSn is a sialic acid binding lectin and that interactions between sialic acid on the PRRS virion and pSn are essential for PRRSV infection of PAM.  相似文献   

14.
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.  相似文献   

15.
All currently identified primary receptors of adeno-associated virus (AAV) are glycans. Depending on the AAV serotype, these carbohydrates range from heparan sulfate proteoglycans (HSPG), through glycans with terminal α2-3 or α2-6 sialic acids, to terminal galactose moieties. Receptor identification has largely relied on binding to natural compounds, defined glycan-presenting cell lines, or enzyme-mediated glycan modifications. Here, we describe a comparative binding analysis of highly purified, fluorescent-dye-labeled AAV vectors of various serotypes on arrays displaying over 600 different glycans and on a specialized array with natural and synthetic heparins. Few glycans bind AAV specifically in a serotype-dependent manner. Differential glycan binding was detected for the described sialic acid-binding AAV serotypes 1, 6, 5, and 4. The natural heparin binding serotypes AAV2, -3, -6, and -13 displayed differential binding to selected synthetic heparins. AAV7, -8, -rh.10, and -12 did not bind to any of the glycans present on the arrays. For discrimination of AAV serotypes 1 to 6 and 13, minimal binding moieties are identified. This is the first study to differentiate the natural mixed heparin binding AAV serotypes 2, 3, 6, and 13 by differential binding to specific synthetic heparins. Also, sialic acid binding AAVs display differential glycan binding specificities. The findings are relevant for further dissection of AAV host cell interaction. Moreover, the definition of single AAV-discriminating glycan binders opens the possibility for glycan microarray-based discrimination of AAV serotypes in gene therapy.  相似文献   

16.
CD22/Siglec-2 is a B cell membrane-bound lectin that recognizes glycan ligands containing alpha2,6-linked sialic acid, and negatively regulates signaling through the B cell antigen receptor (BCR). Previous studies demonstrated that synthetic sialosides that bind to CD22 augment BCR signaling by inhibiting CD22-mediated BCR regulation. Here we demonstrate that, after antigen stimulation, CD22 forms a cap together with BCR, and translocates to lipid rafts. Both co-capping of CD22 with BCR and translocation of CD22 to lipid rafts were markedly blocked by a synthetic alpha2,6-linked sialic acid, Neu5Gcalpha2-6GalbetaSE. These results strongly suggest that synthetic glycan ligand excludes CD22 from BCR-containing lipid rafts. Because CD22-mediated signal regulation requires phosphorylation of CD22 by Lyn that localizes in lipid rafts and is activated by BCR, synthetic glycan ligand regulates localization of CD22 crucial for signal regulation.  相似文献   

17.
18.
Herpes simplex virus type 1 (HSV-1) envelope proteins are posttranslationally modified by the addition of sialic acids to the termini of the glycan side chains. Although gC, gD, and gH are sialylated, it is not known whether sialic acids on these envelope proteins are functionally important. Digestion of sucrose gradient purified virions for 4 h with neuraminidases that remove both alpha2,3 and alpha2,6 linked sialic acids reduced titers by 1,000-fold. Digestion with a alpha2,3-specific neuraminidase had no effect, suggesting that alpha2,6-linked sialic acids are required for infection. Lectins specific for either alpha2,3 or alpha2,6 linkages blocked attachment and infection to the same extent. In addition, the mobility of gH, gB, and gD in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels was altered by digestion with either alpha2,3 specific neuraminidase or nonspecific neuraminidases, indicating the presence of both linkages on these proteins. The infectivity of a gC-1-null virus, DeltagC2-3, was reduced to the same extent as wild-type virus after neuraminidase digestion, and attachment was not altered. Neuraminidase digestion of virions resulted in reduced VP16 translocation to the nucleus, suggesting that the block occurred between attachment and entry. These results show for the first time that sialic acids on HSV-1 virions play an important role in infection and suggest that targeting virion sialic acids may be a valid antiviral drug development strategy.  相似文献   

19.
Recent human infections caused by the highly pathogenic avian influenza virus H5N1 strains emphasize an urgent need for assessment of factors that allow viral transmission, replication, and intra-airway spread. Important determinants for virus infection are epithelial cell receptors identified as glycans terminated by an alpha2,3-linked sialic acid (SA) that preferentially bind avian strains and glycans terminated by an alpha2,6-linked SA that bind human strains. The mouse is often used as a model for study of influenza viruses, including recent avian strains; however, the selectivity for infection of specific respiratory cell populations is not well described, and any relationship between receptors in the mouse and human lungs is incompletely understood. Here, using in vitro human and mouse airway epithelial cell models and in vivo mouse infection, we found that the alpha2,3-linked SA receptor was expressed in ciliated airway and type II alveolar epithelial cells and was targeted for cell-specific infection in both species. The alpha2,6-linked SA receptor was not expressed in the mouse, a factor that may contribute to the inability of some human strains to efficiently infect the mouse lung. In human airway epithelial cells, alpha2,6-linked SA was expressed and functional in both ciliated and goblet cells, providing expanded cellular tropism. Differences in receptor and cell-specific expression in these species suggest that differentiated human airway epithelial cell cultures may be superior for evaluation of some human strains, while the mouse can provide a model for studying avian strains that preferentially bind only the alpha2,3-linked SA receptor.  相似文献   

20.
Four common sialic acids (Sia), NeuAc, N-glycolyl-neuraminic acid (NeuGc), 4-O-acetyl-N-acetylneuraminic acid (4-O-Ac-NeuAc), and 9-O-Ac-NeuAc were examined for activation to their corresponding CMP-sialic acid conjugates and subsequently for their transfer to glycoprotein oligosaccharides by purified mammalian sialyltransferases. CMP-sialic acid synthetases from calf brain and from bovine and equine submaxillary glands were found to convert NeuAc, NeuGc, and 9-O-Ac-NeuAc to their corresponding CMP-sailic acids. In contrast, no conversion of 4-O-Ac-NeuAc to CMP-4-O-Ac-NeuAc was observed for any of the three synthetases examined. A new procedure for the preparation of CMP-9-O-Ac-NeuAc, CMP-NeuGc, and CMP-NeuAc in high yield and purity was developed, using the calf brain CMP-sialic acid synthetase. Each of these derivatives was tested as donor substrates for six mammalian sialyltransferases purified from porcine, rat, and bovine tissues, including a bovine GalNAc alpha 2,6 sialyltransferase whose purification is described in this report. The sialyltransferases examined represent those which form the Sia alpha 2,6Gal beta 1,4-GlcNAc-, Sia alpha 2,3Gal beta 1,3(4)GlcNAc-, Sia alpha 2,3Gal beta 1,3-GalNAc- and Sia alpha 2,6GalNAc- sequences found on N-linked and O-linked oligosaccharides of glycoproteins. CMP-NeuAc and CMP-NeuGc were equally good donor substrates for all six sialyltransferases. However, transfer of 9-O-Ac-NeuAc from CMP-9-O-Ac-NeuAc varied from only 10% to nearly 70% that of the transfer of NeuAc from CMP-NeuAc. Results are viewed to define the relative roles of direct transfer of these sialic acids and modification of glycosidically bound NeuAc in glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号