首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The adaptive significance of colour polymorphisms in animals has received extensive scientific attention. In snakes, a generally accepted hypothesis is that melanistic individuals enjoy thermal advantages compared to normal coloured individuals. Elaphe quadrivirgata on Yakushima Island exhibits a distinct melanistic/striped colour dimorphism. To test this hypothesis, the thermal biology of free‐ranging E. quadrivirgata was investigated using temperature‐sensitive radio transmitters. The thermal quality of habitats was also evaluated using physical models of the snake. In addition, the species' set‐point range (Tset) was estimated using a laboratory experiment. In July, thermal environments appear to be benign because snakes were able to maintain their body temperature (Tb) within Tset from the midday to evening by using average thermal habitats. By contrast, later months of the year were severe in thermoregulation, and snakes had difficulty maintaining their Tb within Tset by using average thermal habitats. There were no significant intermorph differences in thermoregulation indices in any months, whereas slight differences were detected in hourly comparisons. Most of these comparisons indicated active and precise thermoregulation (with respect to Tset) in striped individuals by using thermally favourable but rare microhabitats such as forest gap. Thus, the obtained values do not support the prediction that melanistic individuals are precise thermoregulators. Yet, melanistic individuals do modify their thermoregulation strategy with respect to the available thermal environments in contrast to striped individuals. Together with the fact that body heating is slower in striped individuals than in melanistic individuals under experimental conditions, it is concluded that melanistic individuals have the potential to enjoy thermal advantages but that this might be of no practical use in terms of Tb in the wild because of the greater thermoregulatory efforts of striped individuals, and because melanistic individuals may use forest gap rarely due to conspicuousness to visually orientated predators under the exposed habitat. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 309–322.  相似文献   

2.
Tanaka K 《Zoological science》2005,22(11):1173-1179
Temperature is a critical factor limiting various aspects of the biology of ectotherms. In addition to environmental factors, coloration and body size are two physical properties that influence ectotherms' body temperature (T(b)). I compared the influences of these properties on thermal aspects of the two morphs of the color-dimorphic snake (E. quadrivirgata) under experimental conditions. First, I fitted T(b) data during heating to the von Bertalanffy equation, but considered parameter values of the equilibrium temperature obtained to be biologically meaningless. Alternatively, I limited the data for comparison of the morphs to T(b) < or =35 degrees C, which was the T(b) at which snakes began to move vigorously in the experiment. The rate of T(b) increase was significantly greater in the melanistic morph than in the striped morph. Heating rate was negatively correlated with body size in both morphs. The interaction of body size and heating rate did not significantly differ between the two morphs. The possibility of linkage, due to thermal advantage, between small body size and the prevalence of melanism in the population studied is briefly discussed. Rapid increase of T(b) is biologically advantageous because snakes with such ability would be released from various time and environmental constraints associated with thermoregulation under particular environmental conditions.  相似文献   

3.
Populations of pygmy grasshoppers, Tetrix subulata, display genetically coded discrete variation in colour pattern and there are differences among morphs in the capacity to achieve body heating. To determine whether colour morphs differ in thermal physiology, I assessed reaction distance and jumping performance of individuals belonging to different morphs at two different temperatures. Individuals allowed a potential predator to approach less closely and jumped longer distances at high than at low temperature. My analyses also uncovered variation among morphs in average reaction distance and jumping capacity, as well as in thermal sensitivity of these two traits. Matrix correlation analysis further revealed that pair-wise differences between morphs in thermal sensitivity of jumping performance (but not reaction distance) could be accurately predicted by differences in body temperatures preferred in a laboratory thermal gradient. These results support the view that morphology, behaviour and thermal physiology of ectotherms may evolve in concert. The relationship between reaction distance and jumping performance varied among colour morphs at high temperature, and the common within-morph relationship between these two traits deviated from the corresponding among-morph relationship. This suggests that the variation among morphs has partially arisen through active divergence, with selection having influenced both traits and modifications having occurred to different degrees in different morphs. My data further suggest that pale colour morphs, with a limited capacity to attain high body temperatures, may not necessarily be at a selective disadvantage, because their physiology may be adapted to lower body temperatures.  相似文献   

4.
Habitat selection behavior is affected by complex interplays between competing requirements. Here we combine field observations with laboratory experiments to examine how thermal benefits and predator avoidance influences habitat selection by different color morphs of the pygmy grasshopper Tetrix undulata. The composition of substrate types and surface temperatures in areas selected by free-ranging individuals did not reflect relative availability, and varied among morphs and sexes. Surface temperatures of selected habitats deviated less from the range of preferred body temperatures than would result from a random utilization of surface temperatures, suggesting that grasshoppers selected habitats with thermal properties which were suitable for maintaining preferred body temperatures. The thermal property of habitats occupied by different color morphs suggests that darker morphs (which absorb more solar radiation) selected cooler habitats to avoid overheating. Dissimilarities in substrate use among color morphs in the field and laboratory emphasize a role also of predator avoidance by background matching for habitat choice. The degree of habitat selectivity was lowest in the striped morph, supporting the notion that a disruptive color pattern may constitute a solution to the trade-off between relative crypsis in different visual backgrounds. Finally, individuals modified their habitat use when subjected to elevated risk of predation, showing that habitat choice is governed by conflicting priorities. Collectively, our findings suggest that, as a result of direct and indirect effects of coloration on performance, alternative color morphs use different solutions to the trade-off between competing requirements. Our results also lend support to the notion that relative fitness of alternative color morphs and sexes may be dependent on microhabitat selection, as predicted by the theory of multiple niche polymorphisms.  相似文献   

5.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Local populations of the adder, Vipera berus, are polymorphic for dorsal colour pattern, containing both melanistic (black) and zig-zag patterned individuals. Colour patterns in snakes influence crypsis and thermoregulatory capacity and therefore may be subjected to natural selection. To find an explanation for the maintenance of this polymorphism I examined temporal and spatial variation in morph frequency, and tested for differential selection among morphs using data from a six year capture-mark-recapture study. The data derive from six groups of islands in the Baltic Sea off the Swedish east coast, two mainland localities near the coast, and one inland locality. Morph frequency did not change over time within a population but varied among populations: melanistic individuals were not found at the inland locality, but comprised from 17 to 62% of the coastal and island populations. Adders frequently moved between islands within a group, but the tendency to disperse was independent of morph. These results suggest that the polymorphism is stable and maintained by a deterministic process. Scar frequency was twice as high among melanistic as among zig-zag snakes, and melanistic individuals were easier to capture, indicating that predation may be higher on the melanistic morph. Colour morphs did not differ in body size, but analysis of recapture data shows evidence for differential survival among morphs. Zig-zag males survived better than melanistic males, but the relative survival rates of morphs were reversed in females. This difference was consistent through time and may be due to sexual differences in behaviour, with melanism increasing predation intensity when associated with male but not with female behaviour. Opposing fitness consequences of colour pattern in the two sexes may help maintain colour polymorphism within populations of Vipera berus.  相似文献   

7.
Ectothermic animals rely on external heat sources and behavioral thermoregulation to control body temperature, and are characterized by possessing physiological and behavioural traits which are temperature dependent. It has therefore been suggested that constraints on the range of body temperatures available to individuals imposed by phenotypic properties, such as coloration, may translate into differential fitness and selection against thermally inferior phenotypes. In this paper, I report an association between thermal preferences and thermal capacity (the ability to warm up when insolated) across different genetically coded color morphs of the pygmy grasshopper Tetrix subulata. Data on behavioral thermoregulation of individuals in a laboratory thermal gradient revealed a preference for higher body temperatures in females than in males, and significant variation among colour morphs in preferred body temperatures in females, but not in males. The variation in females was in perfect accordance with estimates of morph-specific differences in thermal capacity. Thus, dark morphs not only attain higher temperatures when exposed to augmented illumination, but also prefer higher body temperatures, compared to paler morphs. This intra-population divergence probably reflects an underlying variation among colour morphs in temperature optima, and is consistent with the notion that coloration, behaviour and physiology evolve in concert.  相似文献   

8.
1. When studying speciation, researchers commonly examine reproductive isolation in recently diverged populations. Polymorphic species provide an opportunity to examine the role of reproductive isolation in populations that may be in the process of divergence. 2. We examined a polymorphic population of Plethodon cinereus (red-backed salamanders) for evidence of sympatric ecological separation by colour morphology. Recent studies have correlated temperature and climate with colour morphology in this species, but no studies have looked at differences in diet or mate choice between colour morphs. We used artificial cover objects to assess salamander diet, mating preference and surface activity over a 2-year period at a field site in north-eastern Ohio. 3. We detected differences in diet between two colour morphs, striped and unstriped. The diets of striped individuals were significantly more diverse and were made up of more profitable prey than the diets of unstriped salamanders. 4. Opposite sex pairs were made up of individuals of the same colour morph and striped males were found more often with larger females than were unstriped males. 5. We corroborate findings of earlier studies suggesting that the unstriped form is adapted to warmer conditions. Unstriped individuals were the first to withdraw from the forest floor as temperatures fell in the late fall. We found no evidence that the colour morphs responded differently to abiotic factors such as soil moisture and relative humidity, and responses to surface temperatures were also equivocal. 6. We conclude that the two colour morphs exhibit some degree of ecological separation and tend to mate assortatively, but are unlikely to be undergoing divergence given the observed frequency of intermorph pairings.  相似文献   

9.
The occurrence of striped colour patterns and of striped/non-striped polymorphism systems among snakes is reviewed from literature data augmented by some personal observations. Among 1367 species, 190 were striped or had striped morphs. Of 11 families, the striped pattern was common mainly among Colubridae, presumably in relation to the active escape behaviour strategy, prevalent in this family. The striped species tended to cluster in a small number of genera. The 40 striped/non-striped polymorphism systems found, fall into five categories, according to the coloration patterns of the alternative morphs: (I) blotched (cryptic); (2) barred (or ringed); (3) plain; (4) melanistic; (5) albinistic. Most polymorphisms are presumably maintained by eco-behavioural trade-offs, depending on the category and on the habitat: The striped morph is presumed more effective in active escape and sometimes also in camouflage; the alternative morph may be more effective in camouflage, in active escape or in thermoregulation. Hence morph frequency depends on the habitat. Striped-albinistic polymorphism in Elaphe climacophora presumably depends on human protection of the albino morph.  相似文献   

10.
Species may circumvent the impacts of climate warming if the habitats they use reduce ambient temperature. In this study, we identified which frog species from a tropical montane rain forest in the Philippines may be vulnerable to climate warming. To do so, we selected five anuran species that utilize four breeding habitats and identified the sensitivity and exposure of tadpoles and direct‐developer eggs to heat by measuring their critical thermal maximums (CTmax) and the habitat‐specific temperatures they experience. Our study species included two direct‐developer frogs—one species that lays its eggs on exposed leaves, and another that lays its eggs in ferns—and three species that produce aquatic free‐swimming tadpoles—two stream breeders, and one phytotelm (tree hole) breeder. We compared thermal tolerances derived from microclimates of breeding habitats with tolerances derived from macroclimate (i.e., non‐buffered air temperature taken from the rain forest canopy). We also examined whether differences in CTmax existed across life‐history stages (egg, metamorph/young‐of‐year, and adult) for the two direct‐developer frog species. Habitats buffered ambient temperature and expanded thermal tolerances of all frog species. We found that direct‐developers, however, are more vulnerable to increased temperatures than aquatic breeders—indicated by their high sensitivity to temperature, and exposure to high temperatures. Direct‐developer eggs were more sensitive to warming than both metamorph and adult life‐history stages. Thermally buffered microhabitats may represent the only protection against current and impending climate warming. Our data highlight the importance of considering sensitivity and exposure in unison when deciphering warming vulnerability of frogs.  相似文献   

11.
We applied a numerical hydrodynamic model (DYRESM) to two large, deep New Zealand lakes that are characterised by deep thermoclines and high wind forcing, to assess their sensitivity to changes in climate. Modifications to standard model parameters were necessary for the successful application of DYRESM. Predictions from downscaled global circulation models suggest an increase in mean air temperature, rainfall, and wind speeds. Modelling the hydrodynamics of the lakes suggests that increasing air temperatures would offset the cooling influences of increased rainfall and river flows, resulting in warmer overall lake temperatures, and an earlier, longer, and shallower thermal stratification. These physical changes could affect phytoplankton production as their light limitation would decrease in duration and intensity. However, deeper mixing caused by increases in wind speed would negate this reduction of thermocline depth. While warmer air temperatures appear to be the dominant driver of changes in thermal structure, changes in other meteorological factors, especially wind speed, are important in predicting future hydrodynamics. Compared to large, deep lakes in the Northern Hemisphere, the predicted warming rates in Lakes Wanaka and Wakatipu are slower, due partly to a lower predicted rate of atmospheric warming and the absence of winter ice cover in these lakes.  相似文献   

12.
Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field‐active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex‐specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex‐specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex‐ and size‐based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.  相似文献   

13.
Abstract.  According to biophysical principles, colour and size are important phenotypic factors that may influence body temperature and activity in ectothermic insects. In taxa showing female-limited polymorphism, males and female morphs differ in body colour, size and activity pattern. However, no previous study has evaluated whether such phenotypic and behavioural variation relates to differences between males and female morphs in thermal properties. In the present study, the relationships between body colour, size, activity and body temperature are examined under laboratory and field conditions, for the polymorphic damselfly Enallagma cyathigerum (Charpentier, 1840) (Odonata: Zygoptera). Contrary to expectation, males and female colour morphs of this species do not differ in thermal properties (i.e. heating characteristics or field body temperatures). When questioning phenotype and activity, temperature does not appear to be relevant for understanding the maintenance of female-limited polymorphism.  相似文献   

14.
Females of Lampropholis delicata are dimorphic for colour pattern, the difference between morphs being the presence or absence of a distinct white mid-lateral stripe. A less distinct striped morph occurs also in males. We evaluated alternative hypotheses for the maintenance of this polymorphism by examining temporal and spatial variation in morph frequency, testing for differential selection among morphs using data on body size and reproductive traits from preserved specimens, and experimentally manipulating colour pattern in free-ranging lizards of both sexes, to assess the influence of the lateral stripe on survival rates. We found that the relative frequency of striped individuals varied among populations and decreased from north to south in both sexes, coincident with an increasing incidence of regenerated tails. Morph frequencies did not change through time within a population. Striped gravid females appeared to survive better and produced larger clutches than did non-striped females. In our experimental study, the relationship between survival and colour morph differed between the two sexes; males painted with a white lateral stripe had lower survival than control (brown stripe) males, but survival did not differ between striped and control females. The different response in the two sexes may be due partly to differences in temperature and microhabitat selection. We propose that the white lateral stripe decreases susceptibility to predators in gravid females but increases risk of predation in males, especially in combination with low temperatures. The polymorphism might be maintained by: (1) opposing fitness consequences of the stripe in males and females; (2) sex-specific habitat selection; and (3) gene flow in combination with spatial variation in relative fitness of the two morphs.  相似文献   

15.
The influence of mode of capture, season of capture and total body length ( L T) on the probability of regurgitation for striped bass Morone saxatilis captured using gillnets in Smith Mountain Lake, Virginia, was examined. Overall, the mean rate of regurgitation for striped bass which contained food contents in their stomach was 8·3%. Striped bass captured by wedging had a higher mean regurgitation rate (17%) than individuals that were either entangled (5%) or gilled (2%). Striped bass caught during the autumn had approximately the same frequency of regurgitation as individuals captured during the summer (10 v . 9%), but these regurgitation rates were higher than those observed for fish during the spring sampling periods (4%). Larger striped bass were more likely to regurgitate their stomach contents than smaller individuals, with the frequency of regurgitation increasing by 0·7% for every 50 mm increase in L T. The results of this study demonstrate the importance of identifying factors that influence regurgitation of stomach contents to minimize and account for biases associated with diet data collected from striped bass captured in gillnets. Using this information, sampling recommendations for food‐habit and feeding‐rate studies involving the collection of piscivorous fishes using gillnets are made.  相似文献   

16.
New techniques were utilized to measure burst speed and distance running capacity in six species of lizards and to examine the thermal dependence of these behavioural capacities. These behaviours were repeatable among groups of animals within a species, within a group during the experiments, and among individuals of a group. Burst speeds averaged 130 to 150 m/min for active species, with some individuals exceeding 200 m/min. Total distances run during 2 min averaged 60 to 70 m in species with the greatest stamina. Thermal dependence of these behaviours was low or absent (Q10≤1.5) over the normal range of active body temperatures, and performance was not necessarily maximal at normally experienced body temperatures. These processes have much less thermal dependence than do most physiological processes and suggest adaptations to maintain functional behavioural capacity over a broad range of body temperature.  相似文献   

17.
Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for Liolaemus fitzgeraldi in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that Liolaemus fitzgeraldi has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.  相似文献   

18.
Among taxa ranging from cnidarians to vertebrates, absolute speed of locomotion generally increases with increasing body size. Despite the unique mode of locomotion in echinoderms, crawling speed also appears to increase with increasing body size, at least in some species of asteroids and echinoids. We used an escape-response assay to assess how maximum crawling speed varied with body size in the bat star Patiria miniata. We also tested the effect of arm number on maximum crawling speed by comparing speeds of five- and six-armed individuals. Contrary to prior reports for a single sea urchin and sea star species, both absolute crawling speed and crawling speed relative to body size actually declined with increasing body mass, increasing arm length, and increasing oral surface area, in both five- and six-armed individuals. Arm number did not appear to have a significant effect on crawling speed. The reasons for this negative relationship between crawling speed and body size in P. miniata remain unclear, but we suspect that the disproportionate increase in body mass relative to total tube-foot cross-sectional area may make locomotion proportionally more difficult in larger-bodied sea stars.  相似文献   

19.
Timema cristinae is a herbivorous insect that exhibits polymorphism for body coloration (green, red and grey morphs) and for pattern (striped, expressed only in the green morph, and unstriped). The striped green morph is associated with ceanothus ( Ceanothus spinosus ) and the unstriped green morph is associated with chamise ( Adenostoma fasciculatum ). This study examines the relative vulnerabilities to predation of the different pattern and colour morphs on their natural backgrounds. The vulnerabilities of the striped and unstriped morphs on their two food plants were tested using uncaged wild birds (Scrub Jays) and captive western fence lizards. Strong differential predation was observed suggesting that each morph is most cryptic on the food plant on which it is most common. Furthermore, in a mark-recapture experiment in a patch of ceanothus the unstriped and red morphs were recaptured in higher proportion than the other morphs. The vulnerabilities of the grey and green morphs on the ground and foliage were tested using lizards. The grey morph was more vulnerable on the plants than the green morph, but the inverse was observed on the ground (where they drop after a disturbance). This may be why the grey morph is not associated with specific food plants. The striped and colour polymorphisms in T. cristinae appear to be an evolutionary consequence of differential predation on different backgrounds. The implications of differential predation to food-plant utilization are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号