首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SDS-PAGE analysis of luminal fluid from the ram testis and epididymis revealed a protein of about 105 kDa in the fluid in the caput epididymal region. The molecular mass of this fluid protein shifted from 105 kDa to 94 kDa in the distal caput epididymidis and remained at 94 kDa in the lower regions of the epididymis. The possible sperm origin of this protein was suggested by the decrease in intensity of a 105-kDa compound on the sperm plasma membrane extract and by its total disappearance from the fluid of animals with impaired sperm production caused by scrotal heating. The 94-kDa protein was purified from ram cauda epididymal fluid, and a rabbit polyclonal antiserum was obtained. This antiserum showed that membranes of testicular sperm and sperm from the initial caput were positive for the presence of an immunologically related antigen. The protein was immunolocalized mainly on the flagellar intermediate piece, whereas in some corpus and caudal sperm, only the apical ridge of the acrosomal vesicle was labeled. The purified protein was microsequenced: its N-terminal was not found in the sequence database, but its tryptic fragments matched the sequence of the angiotensin I-converting enzyme (ACE). Indeed, the purified 94-kDa protein exhibited a carboxypeptidase activity inhibited by specific blockers of ACE. All the soluble seminal plasma ACE activity in the ram was attributable to the 94-kDa epididymal fluid ACE. The polyclonal antiserum also showed that a soluble form of ACE appeared specifically in the caput epididymal fluid of the boar, stallion, and bull. This soluble form was responsible for all the ACE activity observed in the fluid from the distal caput to the cauda epididymidis in these species. Our results strongly suggest that the epididymal fluid ACE derives from the germinal form of ACE that is liberated from the testicular sperm in a specific epididymal area.  相似文献   

2.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

3.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

4.
Monoclonal antibody 4E9, which was raised against a partially purified detergent extract of rat caudal epididymal sperm, recognizes the tail of sperm from the cauda, but not from caput epididymidis, as well as epithelial cells in a restricted region of the distal caput/corpus epididymidis and proteins in epididymal fluid from corpus and cauda epididymidis. The antigen is apparently a glycoprotein, since it is retained on a Ricinus communis agglutinin l lectin column. Epididymal fluid antigens have apparent MrS of 38–26 kD, whereas the memrane-associated form of the molecule has an Mr of 26 kD. Immunocytochemical data and Western immunoblot data suggest that the membrane antigen is derived from the fluid antigen, which, in turn, is secrteted by the epididymal epithelium. Characterization of the membrane antigen indicates that it is tightly associated with the sperm surface, behaving as though it is an integral membrane protein. The antigen persists on ejaculated sperm. © 1994 Wiley-Liss, Inc.  相似文献   

5.
It has recently been shown in mice that the plasma membrane Ca2+-ATPase isoform 4 (PMCA4) is essential for sperm fertilization capacity. We analyzed whether sperm PMCA4 is formed in the rat during spermatogenesis or is synthesized in the epididymis and transferred onto sperm during sperm maturation. We could show that PMCA4 is conserved in sperm from testis to epididymis. In testis, PMCA4 mRNA was restricted to spermatogonia and early spermatocytes, while the PMCA4 protein was detected in spermatogonia, late spermatocytes, spermatids and in epididymal sperm. In epididymis PMCA4 mRNA was localized in basolateral plasma membranes of epithelial cells of the caput, corpus and cauda epididymidis. In contrast, the protein was only detectable in the epithelial cells of the caput, indicating that PMCA4 mRNA is only translated into protein in caput epithelium. In the epididymal corpus and cauda, PMCA4 mRNA and protein, respectively, was localized and in peritubular cells. Furthermore, we detected an identical distribution of PMCA4a and b splice variants in rat testis, epididymal corpus and cauda. In the caput epididymidis, where PMCA4 is located in the epithelium splice variant 4b was more prominent. Further experiments have to clarify the functional importance of the differences in the PMCA4 distribution.  相似文献   

6.
Rabbit polyclonal antibodies were raised against ram cauda epididymal sperm proteins solubilized by N-octyl-beta-D-glucopy-ranoside (anti-CESP) and against proteins of the fluid obtained from the cauda epididymidis (anti-CEF). The anti-CESP polyclonal antibody reacted with several bands from 17 to 111 kDa with different regionalization throughout the epididymis. The strongest epitopes at 17 kDa and 23 kDa were restricted to the cauda epididymidis. The anti-CEF polyclonal antibody reacted mainly with a 17-kDa and a 23-kDa compound in the cauda sperm extract. These cauda epididymal 17- and 23-kDa proteins disappeared after orchidectomy, but they reappeared in the same regions after testosterone supplementation, indicating that they were secreted by the epithelium. The fluid and membrane 17- and 23-kDa antigens had a low isoelectric point and were glycosylated. The fluid 17- and 23-kDa proteins had hydrophobic properties: they were highly enriched in the Triton X-114 detergent phase and could be extracted from the cauda epididymal fluid by a chloroform-methanol mixture. These proteins were further purified, and their N-terminal sequences did not match any protein in current databases. A polyclonal antibody against the fluid 17-kDa protein recognized the protein in the cauda epididymal sperm extract and immunolocalized it on the sperm flagellum membrane and at the luminal border of all cells in the cauda epididymal epithelium. These results indicated that secreted glycoproteins with hydrophobic properties could be directly integrated in a specific domain of the sperm plasma membrane.  相似文献   

7.
The highest levels of carnitine and acylcarnitine were found in the cauda epididymidis, and spermatozoa from the cauda contained greater amounts of total carnitine (free carnitine plus acylcarnitine) than those removed from the corpus or caput epididymidis. Spermatozoa from the distal cauda contained significantly greater amounts of both free and total carnitine than those removed from the proximal cauda epididymidis. The acylcarnitine:carnitine ratio was 1.7 and 0.37 in caput and cauda spermatozoa, respectively and 1.7 and 1.3 in caput and cauda fluid, respectively. It is suggested that the accumulation of carnitine is involved in sperm maturation and that acylcarnitine serves as an energy substrate for epididymal spermatozoa.  相似文献   

8.
A polyclonal monospecific immune serum was raised against androgen-regulated proteins with Mr 24000 secreted by the mouse caput epididymidis. Sections of frozen tissues from the different regions of the epididymis have been studied by indirect immuno- fluorescence. Results indicate that the antigens are secretory proteins produced by the epithelial cells of the caput epididymidis, essentially in the medial and distal segments. Accumulation of the antigens was observed in the lumen of the caput and the corpus epididymal duct. Subsequently, their association with the sperm surface occurred and persisted down to the cauda epididymidis.  相似文献   

9.
A polyclonal monospecific immune serum was raised against androgen-regulated proteins with Mr 24000 secreted by the mouse caput epididymidis (6). Sections of frozen tissues from the different regions of the epididymis have been studied by indirect immuno- fluorescence. Results indicate that the antigens are secretory proteins produced by the epithelial cells of the caput epididymidis, essentially in the medial and distal segments. Accumulation of the antigens was observed in the lumen of the caput and the corpus epididymal duct. Subsequently, their association with the sperm surface occurred and persisted down to the cauda epididymidis.  相似文献   

10.
During their transit along the epididymidis, mammalian spermatozoa acquire new proteins involved in the acquisition of male gamete fertilizing ability. We previously described membranous vesicles called epididymosomes, which are secreted in an apocrine manner by the epididymal epithelium. Some selected proteins associated with epididymosomes are transferred to spermatozoa during epididymal transit. The present study compared epididymosomes collected from caput epididymal fluid with vesicles from the cauda epididymidis in the bull. Two-dimensional gel electrophoresis revealed major differences in protein composition of epididymosomes isolated from the caput and cauda epididymidis. LC-QToF analysis of major protein spots as well as Western blot analysis confirmed the differences in proteins associated with these two populations of epididymosomes. Biotinylated proteins associated with caput and cauda epididymosomes also revealed differences. When incubated with caput epididymal spermatozoa, epididymosomes prepared from these two segments transferred different protein patterns. By contrast, cauda epididymosomes transferred the same pattern of proteins to spermatozoa from the caput and cauda epididymidis. Transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa decreased in a dose-dependent manner when biotinylated epididymosomes were diluted with unbiotinylated vesicles. Caput epididymosomes added in excess were unable to inhibit transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa. Following transfer of biotinylated proteins from cauda epididymosomes to caput spermatozoa, addition of unbiotinylated cauda epididymosomes was unable to displace already transferred biotinylated proteins. These results established that epididymosomes from caput and cauda epididymidis have different protein composition and interact differently with maturing spermatozoa.  相似文献   

11.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

12.
Micropuncture samples of luminal fluid were collected from the rete testis and along the epididymis. Quantitative analyses showed that the ductuli efferentes reabsorb about half the protein leaving the testis. Considerable protein is secreted by the caput epididymidis (initial segment) and there is a net loss of protein from the corpus and cauda epididymidis. Denatured, polyacrylamide gel electrophoresis showed that there are 5 proteins in rete testis fluid which are not present in blood (Mr of 14,700, 22,800, 24,100, 43,000 and 44,800). One of these proteins (Mr 14,700) is lost from plasma in the ductuli efferentes and 2 (Mr 43,200 and 44,800) are lost in the corpus epididymidis. Twelve proteins appear in the epididymal plasma and are not present in rete testis fluid or blood: 6 appear in the caput epididymidis (Mr 30,000, 31,000, 32,300, 17,400, 18,700 and 21,400), 3 in the corpus epididymidis (Mr 12,800, 39,800 and 90,600) and 3 in the cauda epididymidis (Mr 10,900, 56,300 and 63,000). A protein with the same molecular weight as a blood protein (149,500) accumulates in the corpus and cauda epididymidis. None of the samples of luminal fluid contained particulate matter other than spermatozoa, indicating that the tammar is a useful animal for micropuncture studies.  相似文献   

13.
It is generally accepted that spermatozoa become functionally mature during epididymal transit. The objective of this study was to determine whether the cellular location of equine PH-20 is modified during epididymal transit and, if so, the mechanism for such modification. Sperm were isolated from caput and cauda epididymal regions from stallions undergoing castration (n = 7) and used as whole sperm cell or subjected to nitrogen cavitation for isolation of plasma membrane proteins. Both caput and cauda sperm and sperm protein extracts were subjected to N-deglycosylation, O-deglycosylation, or trypsinization. The SDS-PAGE and Western blot analysis using a polyclonal anti-equine PH-20 IgG were performed in sperm extracts, and indirect immunofluorescence on whole sperm was also performed to determine the cellular distribution of plasma membrane PH-20 following similar treatments (deglycosylation or trypsinization). Hyaluronan substrate gel electrophoresis was performed to detect hyaluronidase activity in SDS-PAGE proteins. Western blots revealed significant differences in electrophoretic migration of PH-20 proteins from caput and cauda epididymal sperm. No effect was seen from deglycosylation treatments on the Western blot pattern; caput protein extracts exposed to trypsin showed the same band pattern as extracts from the cauda epididymis. N-deglycosylation resulted in the loss of hyaluronidase activity of sperm from both epididymal regions, whereas O-deglycosylation or trypsinization did not affect hyaluronidase activity. In caput epididymal sperm, the PH-20 protein is distributed over the entire sperm head; in cauda epididymal sperm, it is restricted to the postacrosomal region. No effect from deglycosylation on the cellular distribution of PH-20 was observed; however, treatment with trypsin changed the cellular distribution of PH-20 in caput sperm similar to that of the distribution of cauda sperm. These results suggest that PH-20 distribution during epididymal maturation is dependent on proteolytic trypsin-like mechanisms and, possibly, on complementary membrane-associated factors.  相似文献   

14.
Clusterin (sulfated glycoprotein-2) is a heterodimeric glycoprotein synthesized and secreted by rat Sertoli cells. An antigenically similar form is synthesized and secreted by the epididymis. The goal of this study was to define the epididymal regions in which clusterin is present and the regions in which clusterin is secreted and interacts with developing spermatozoa. Seminiferous tubule (STF), caput, corpus, and cauda fluids were collected by micropuncture and/or microperfusion and two-dimensional Western blot analysis was performed with a polyclonal antibody directed against Sertoli cell clusterin. Clusterin was found in both STF and epididymal fluid. STF contained predominantly the clusterin heavy chain (45 kd); however, a 70 Kd heterodimer was present under nonreducing conditions. Two subunits of clusterin with lower molecular weights (41 kd, heavy chain; 32 kd, light chain) and higher isoelectric points were present in the luminal fluid of all epididymal regions. The intraluminal levels of the heavy and light chains decreased from caput to cauda. Analysis by two-dimensional gel electrophoresis of proteins secreted directly into the epididymal luminal fluid revealed that clusterin was secreted by caput epithelium and not by the corpus and cauda epithelium. Western blots of membrane extracts from testicular, caput, and cauda spermatozoa revealed that testicular clusterin was associated with testicular sperm and epididymal clusterin with predominantly caput sperm. Our findings suggest that clusterin is secreted into the caput epididymal lumen, where it binds to sperm and then dissociates from sperm to be endocytosed by cells of the distal epididymal epithelium.  相似文献   

15.
Intact chimpanzee caput and cauda epididymal sperm, sperm cell lysates, and caput and cauda epididymal fluid were radiolabeled by enzymatic iodination with lactoperoxidase and Na125 I and were compared by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Caput epididymal sperm showed nine labeled macromolecular components of 90, 64, 56, 48, 38, 31, 20, 18 and 16 Kd and cauda epididymal sperm showed eleven macromolecular components of 90, 64, 55, 47, 42, 33, 27, 18, 17, 15 and 11 Kd. Six of the components labeled on caput sperm (90, 64, 56, 48, 18 and 16 Kd) were detected in equal amounts of cauda sperm and two (38 and 20 Kd) were detected at greatly reduced labeling intensities. In the cauda epididymidis, four new components (33, 27, 17 and 11 Kd) became prominent features of the sperm surface. Analysis of labeled caput and cauda sperm cell lysates resolved components distinct from those detected on sperm surfaces. Electrophoresis of caput epididymal fluid showed five labeled components of 66, 56, 47, 41 and 37 Kd, while electrophoresis of cauda epididymal fluid showed eight labeled components of 92, 66, 56, 48, 31, 27, 24 and 11 Kd. Three components (66, 56 and 47 Kd) were present in both caput and cauda fluid, two (41 and 37 Kd) in caput fluid only, and five (92, 31, 27, 24 and 11 Kd) in cauda fluid only. Components of 37 Kd were labeled in caput fluid and on caput sperm but not on cauda sperm, whereas components of 27 Kd and 11 Kd were labeled in cauda fluid and on cauda sperm but not on caput sperm. These data show that chimpanzee sperm undergo extensive surface modifications during epididymal maturation and that some of these modifications may be related to exogenous proteins/glycoproteins in epididymal fluids.  相似文献   

16.
Micropuncture samples were taken from the rete testis, caput epididymidis and cauda epididymidis of anaesthetized adult rats and assayed for total protein, sodium and potassium concentrations. Intraluminal sperm concentrations were determined and used to calculate the amount of fluid resorbed from the efferent duct and epididymal lumen. It was demonstrated that large amounts of protein (30.2 mg/ml cauda volume) and sodium (241.8 mequiv./l) and smaller amounts of potassium (19.4 mequiv./l) are resorbed from the rat epididymal lumen between the caput and corpus epididymidis. This occurs despite increases in intraluminal concentrations of protein (from 22 to 28 mg/ml) and potassium (from 16 to 50 mequiv./l). Resorption is an important aspect of epididymal control of the intraluminal environment.  相似文献   

17.
通过双向电泳结合质谱技术分离鉴定正常成年大鼠附睾头段与尾段管腔液中的蛋白组成,从附睾头段及尾段管腔液的22个差异蛋白点中鉴定出12个蛋白质.其中11个蛋白质在不同种属哺乳动物的附睾组织中已有鉴定报道,而过氧化物酶6(peroxiredoxin 6,Prdx6)为新发现的存在于附睾头段及尾段管腔液中的体液蛋白.采用RT-PCR、Western印迹及免疫组化技术,对该蛋白在大鼠附睾中的表达及分布进行了分析.实验表明,Prdx6与精子的成熟、贮存及保护有一定关系,其具体机制值得进一步深入研究.  相似文献   

18.
19.
Spermatozoa, fluids, and principal cells from different regions of the epididymis were characterized by two-dimensional electrophoresis. Rete testis fluid was collected after 36-h efferent duct ligation, and cauda epididymal fluid was collected by retrograde perfusion through the vas deferens. Spermatozoa were collected after their exudation from minced caput and corpus epididymal tissue. Principal cells were recovered after enzymatic disaggregation and centrifugal elutriation of epididymides. Two-dimensional polyacrylamide gel electrophoresis was used to prepare protein profiles of all samples. Comparison of the proteins found in rete testis fluid versus those found in cauda epididymal fluid revealed a dramatic change in composition, including the loss, addition, or retention of specific proteins as well as changes in the relative concentrations of certain proteins. Prominent cauda epididymal fluid proteins, possibly contributed by the epididymal epithelium, were detected at 16, 23, and 34 kDa. After epididymal transit, a considerable decrease was observed in the number of aqueous-soluble sperm proteins. Differences in the protein composition of epididymal epithelial principal cells from the caput versus corpus epididymidis were also noted, suggesting that functional differences exist for these epididymal regions. Of particular interest was the occurrence of a prominent protein of approximately 20-23 kDa found in all sperm samples, in fluids, and in caput and corpus principal cells. However, this protein was absent in cauda epididymal sperm after 36-h efferent duct ligation. The rapid loss of this protein from sperm after efferent duct ligation suggests that this surgical intervention may affect spermatozoa residing within the epididymis.  相似文献   

20.
A specific 135-kDa protein was purified from porcine cauda epididymal fluid. Analysis of its N-terminal amino acid sequence revealed it to be a new protein. Stable clones of hybridomas that produced monoclonal antibodies against the purified 135-kDa protein were established. A clone, B-11, reacting both with epididymal fluid and with sperm plasma membranes was selected and used in this study. Immunoblotting analysis showed that B-11 reacted only with a 135-kDa protein among epididymal fluid proteins. In contrast, B-11 did not recognize a similar 135-kDa sperm protein but did strongly react with a 27-kDa protein among sperm membrane proteins, extracted by NP-40 in the presence of protease inhibitors. B-11 also reacted only with a 27-kDa protein fragment among trypsin digests of the 135-kDa epididymal protein. The 135-kDa protein was first detected, by ELISA or immunoblotting analysis, at the beginning of the corpus epididymis. Maximal levels were reached in the distal corpus and levels were slightly decreased in the cauda epididymis. On the other hand, the surface of caput sperm were found to contain small amounts of antigen(s), the concentration of which gradually increased during epididymal transit. In immunocytochemical studies, the antigen was detectable in the epithelial cells from the initial segment to the corpus of the epididymis but not in the caudal cells. In the lumen, the presence of the 135 kDa protein was apparent in the corpus (at a maximum in the middle and distal corpus) and to a lesser degree in the caudal lumen. The 27-kDa protein was distributed all over the equatorial region of the acrosome of less than 10% of caput epididymal sperm. As sperm passed through the corpus epididymis, the percentage of immunoreactive cells increased and the protein was restricted to specific domains of the sperm head. Thus, on the mature sperm, antigen was localized in a crescent-shaped area of the equatorial segment just behind the anterior part of the acrosome and on the apical rim of the sperm head. This is the first observation of a sperm surface antigen derived from an epididymal protein as a proteolytic fragment that interacts with specific regions of the sperm membrane during the process of spermatozoa maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号