共查询到20条相似文献,搜索用时 0 毫秒
1.
Methionine starvation of methionine auxotrophs in the presence of excess branched-chain amino acids results in a partial derepression of the isoleucine and valine enzymes. Reversed-phase chromatography indicated that isoleucine, valine and leucine tRNA were altered during methionine starvation. In addition, the total tRNA isolated from cells under these conditions were undermethylated. The observed derepression may be caused by the inability of methyl-deficient tRNA's to participate adequately in normal regulatory functions. 相似文献
2.
3.
4.
Stabilization of a HemA-LacZ hybrid protein against proteolysis during carbon starvation in atp mutants of Salmonella typhimurium. 下载免费PDF全文
Transposon insertions that stabilize the beta-galactosidase activity of a HemA-LacZ hybrid protein following carbon starvation were mapped to the atp operon of Salmonella typhimurium. This effect is similar to that seen with nuo mutants defective in the energy-conserving type I NADH dehydrogenase. Insertions in several other genes, including such highly pleiotropic mutants as rpoS, polA, and hfq, were isolated with the same phenotypic screen, but they do not affect the beta-galactosidase activity of HemA-LacZ. All of these mutants act indirectly to alter the colony color of many different fusion strains on indicator plates. 相似文献
5.
6.
Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo 总被引:1,自引:0,他引:1
Saccharomyces cerevisiae is both an emerging opportunistic pathogen and a close relative of pathogenic Candida species. To better understand the ecology of fungal infection, we investigated the importance of pathways involved in uptake, metabolism, and biosynthesis of nitrogen and carbon compounds for survival of a clinical S. cerevisiae strain in a murine host. Potential nitrogen sources in vivo include ammonium, urea, and amino acids, while potential carbon sources include glucose, lactate, pyruvate, and fatty acids. Using mutants unable to either transport or utilize these compounds, we demonstrated that no individual nitrogen source was essential, while glucose was the most significant primary carbon source for yeast survival in vivo. Hydrolysis of the storage carbohydrate glycogen made a slight contribution for in vivo survival compared with a substantial requirement for trehalose hydrolysis. The ability to sense and respond to low glucose concentrations was also important for survival. In contrast, there was little or no requirement in vivo in this assay for any of the nitrogen-sensing pathways, nitrogen catabolite repression, the ammonium- or amino acid-sensing pathways, or general control. By using auxotrophic mutants, we found that some nitrogenous compounds (polyamines, methionine, and lysine) can be acquired from the host, while others (threonine, aromatic amino acids, isoleucine, and valine) must be synthesized by the pathogen. Our studies provide insights into the yeast-host environment interaction and identify potential antifungal drug targets. 相似文献
7.
Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium 下载免费PDF全文
Ibanez-Ruiz M Robbe-Saule V Hermant D Labrude S Norel F 《Journal of bacteriology》2000,182(20):5749-5756
The rpoS gene encodes the alternative sigma factor sigma(S) (RpoS) and is required for survival of bacteria under starvation and stress conditions. It is also essential for Salmonella virulence in mice. Most work on the RpoS regulon has been in the closely related enterobacterial species Escherichia coli. To characterize the RpoS regulon in Salmonella, we isolated 38 unique RpoS-activated lacZ gene fusions from a bank of Salmonella enterica serovar Typhimurium mutants harboring random Tn5B21 mutations. Dependence on RpoS varied from 3-fold to over 95-fold, and all gene fusions isolated were regulated by growth phase. The identities of 21 RpoS-dependent fusions were determined by DNA sequence analysis. Seven of the fusions mapped to DNA regions in Salmonella serovar Typhimurium that do not match any known E. coli sequence, suggesting that the composition of the RpoS regulon differs markedly in the two species. The other 14 fusions mapped to 13 DNA regions very similar to E. coli sequences. None of the insertion mutations in DNA regions common to both species appeared to affect Salmonella virulence in BALB/c mice. Of these, only three (otsA, katE, and poxB) are located in known members of the RpoS regulon. Ten insertions mapped in nine open reading frames of unknown function (yciF, yehY, yhjY, yncC, yjgB, yahO, ygaU, ycgB, and yeaG) appear to be novel members of the RpoS regulon. One insertion, that in mutant C52::H87, was in the noncoding region upstream from ogt, encoding a O(6)-methylguanine DNA methyltransferase involved in repairing alkylation damage in DNA. The ogt coding sequence is very similar to the E. coli homolog, but the ogt 5' flanking regions were found to be markedly different in the two species, suggesting genetic rearrangements. Using primer extension assays, a specific ogt mRNA start site was detected in RNAs of the Salmonella serovar Typhimurium wild-type strains C52 and SL1344 but not in RNAs of the mutant strains C52K (rpoS), SL1344K (rpoS), and C52::H87. In mutant C52::H87, Tn5B21 is inserted at the ogt mRNA start site, with lacZ presumably transcribed from the identified RpoS-regulated promoter. These results indicate that ogt gene expression in Salmonella is regulated by RpoS in stationary phase of growth in rich medium, a finding that suggests a novel role for RpoS in DNA repair functions. 相似文献
8.
9.
10.
11.
The fis operon from Salmonella typhimurium has been cloned and sequenced, and the properties of Fis-deficient and Fis-constitutive strains were examined. The overall fis operon organization in S. typhimurium is the same as that in Escherichia coli, with the deduced Fis amino acid sequences being identical between both species. While the open reading frames upstream of fis have diverged slightly, the promoter regions between the two species are also identical between -49 and +94. Fis protein and mRNA levels fluctuated dramatically during the course of growth in batch cultures, peaking at approximately 40,000 dimers per cell in early exponential phase, and were undetectable after growth in stationary phase. fis autoregulation was less effective in S. typhimurium than that in E. coli, which can be correlated with the absence or reduced affinity of several Fis-binding sites in the S. typhimurium fis promoter region. Phenotypes of fis mutants include loss of Hin-mediated DNA inversion, cell filamentation, reduced growth rates in rich medium, and increased lag times when the mutants are subcultured after prolonged growth in stationary phase. On the other hand, cells constitutively expressing Fis exhibited normal logarithmic growth but showed a sharp reduction in survival during stationary phase. During the course of these studies, the sigma 28-dependent promoter within the hin-invertible segment that is responsible for fljB (H2) flagellin synthesis was precisely located. 相似文献
12.
13.
The molecular basis for positive regulation of cys promoters in Salmonella typhimurium and Escherichia coli 总被引:8,自引:0,他引:8
Nicholas M. Kredich 《Molecular microbiology》1992,6(19):2747-2753
14.
15.
16.
Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress 下载免费PDF全文
The Woronin body is a peroxisome-derived dense-core vesicle that is specific to several genera of filamentous ascomycetes, where it has been shown to seal septal pores in response to cellular damage. The Hexagonal peroxisome (Hex1) protein was recently identified as a major constituent of the Woronin body and shown to be responsible for self-assembly of the dense core of this organelle. Using a mutation in the Magnaporthe grisea HEX1 ortholog, we define a dual and essential function for Woronin bodies during the pathogenic phase of the rice blast fungus. We show that the Woronin body is initially required for proper development and function of appressoria (infection structures) and subsequently necessary for survival of infectious fungal hyphae during invasive growth and host colonization. Fungal mycelia lacking HEX1 function were unable to survive nitrogen starvation in vitro, suggesting that in planta growth defects are a consequence of the mutant's inability to cope with nutritional stress. Thus, Woronin body function provides the blast fungus with an important defense against the antagonistic and nutrient-limiting environment encountered within the host plant. 相似文献
17.
Structural genes for flagellar hook-associated proteins in Salmonella typhimurium. 总被引:6,自引:18,他引:6 下载免费PDF全文
The flaW, flaU, and flaV genes of Salmonella typhimurium LT2 were cloned into pBR322. These genes were mapped on the cloned DNA fragments by restriction endonuclease analysis and construction of the deletion derivatives. Their gene products were identified, by the minicell method, as proteins whose molecular weights were estimated to be 59,000 for the flaW product, 31,000 for the flaU product, and 48,000 for the flaV product. These values are identical to those of three species of hook-associated proteins (HAPs), namely, HAP1, HAP3, and HAP2. Furthermore, antibodies against HAP1, HAP3, and HAP2 specifically reacted with the gene products of flaW, flaU, and flaV, respectively. Therefore, we concluded that they are structural genes for HAPs. The antibodies against HAP1 and HAP3 also specifically reacted with the gene products of flaS and flaT of Escherichia coli, respectively. This indicates that these gene products are HAPs in E. coli. This result is consistent with the demonstration that flaS and flaT of E. coli are functionally homologous with flaW and flaU of S. typhimurium. 相似文献
18.
19.
Starvation- and Stationary-phase-induced resistance to the antimicrobial peptide polymyxin B in Salmonella typhimurium is RpoS (sigma(S)) independent and occurs through both phoP-dependent and -independent pathways. 总被引:2,自引:0,他引:2 下载免费PDF全文
A common stress encountered by Salmonella serovars involves exposure to membrane-permeabilizing antimicrobial peptides and proteins such as defensins, cationic antibacterial proteins, and polymyxins. We wanted to determine if starvation induces cross-resistance to the membrane-permeabilizing antimicrobial peptide polymyxin B (PmB). We report here that starved and stationary-phase (Luria-Bertani [LB] medium) cells exhibited ca. 200- to 1,500-fold-higher (cross-)resistance to a 60-min PmB challenge than log-phase cells. Genetic analysis indicates that this PmB resistance involves both phoP-dependent and -independent pathways. Furthermore, both pathways were sigma(S) independent, indicating that they are different from other known sigma(S) -dependent cross-resistance mechanisms. Additionally, both pathways were important for PmB resistance early during C starvation and for cells in stationary phase in LB medium. However, only the phoP-independent pathway was important for P-starvation-induced PmB resistance and the sustained PmB resistance seen in 24-h-C-starved (and N-starved) or stationary-phase cells in LB medium. The results indicate the presence of an rpoS- and phoP-independent pathway important to starvation- and stationary-phase-induced resistance to membrane-permeabilizing antimicrobial agents. 相似文献