首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have identified a novel Ca2+-signal sensing GTPase (643 amino acid residues with an estimated molecular mass of 79 kDa) from the Arabidopsis genome database. This protein contains a RHO-like GTPase domain at the N-terminus (15–184 amino acids) and two calcium-binding EF-hand motifs (199–227 and 319–347 amino acids, respectively). It has the capability to bind calcium and hydrolyze GTP; in addition, its GTPase activity is regulated by changes in Ca2+ concentration. The expression of this gene was induced by ABA and salt stresses, and specific knock-out mutants were highly sensitive to ABA and salt treatments. These findings suggest that this protein is a novel ABA- and salt stress-related Ca2+ signal transducer.  相似文献   

2.
A clone isolated from a purple podded pea (Pisum sativum L.) cDNA library was shown to contain the complete coding sequence of a polypeptide with considerable homology to various members of the ras superfamily. The ras superfamily are a group of monomeric GTP-binding proteins of 21–25 kDa found in eukaryotic cells. Conserved sequences in the isolated clone include the GTP-binding site, GDP/GTP hydrolysis domain and C-terminal Cys residues involved in membrane attachment. Comparisons of the predicted amino acid sequence with those of other ras proteins show significantly higher homologies (ca. 70%) to two mammalian gene products, those of the BRL-ras oncogene, and the canine rab7 gene, than to any of the plant ras gene products so far identified (<40% homology). The high percentage of amino acid identity suggests that this cDNA may be the product of a gene, designated Psa-rab, which is the plant counterpart of rab7. Rab/ypt proteins are a subfamily of the ras superfamily thought to be involved in intracellular transport from the endoplasmic reticulum to the Golgi apparatus and in vesicular transport.Northern blot hybridisation analysis of total RNA from green and purple podded pea revealed a mRNA species of approximately the same size as the isolated cDNAs.  相似文献   

3.
To analyze the role of cytosolic calcium in regulating heart beat frequency and rhythm, we studied conditional mutations in Drosophila Sarco-endoplasmic reticulum Ca2+-ATPase, believed to be predominantly responsible for sequestering free cytosolic calcium. Abnormalities in the amount or structure of the SERCA protein have been linked to cardiac malfunction in mammals. Drosophila SERCA protein (dSERCA) is highly enriched in Drosophila larval heart with a distinct membrane distribution of SERCA at cardiac Z-lines, suggesting evolutionarily conserved zones for calcium uptake into the sarcoplasmic reticulum. Heart beat frequency is strikingly reduced in mutant animals following dSERCA inactivation, (achieved by a brief exposure of these conditional mutants to non-permissive temperature). Cardiac contractions also show abnormal rhythmicity and electrophysiological recordings from the heart muscle reveal dramatic alterations in electrical activity. Overall, these studies underscore the utility of the Drosophila heart to model SERCA dysfunction dependent cardiac disorders and constitute an initial step towards developing Drosophila as a viable genetic model system to study conserved molecular determinants of cardiac physiology.  相似文献   

4.
Requena  Natalia  Mann  Petra  Hampp  Rüdiger  Franken  Philipp 《Plant and Soil》2002,244(1-2):129-139
The life cycle of the obligate biotrophic arbuscular mycorrhizal fungi comprises several well-defined developmental stages whose genetic determinants are still unknown. With the aim of understanding the molecular processes governing the early developmental phase of the AM fungal life cycle, a subtractive cDNA library was constructed using a suppressive subtractive hybridization technique. The library contains more than 600 clones with an average size of 500 bp. The isolated cDNAs correspond to genes up-regulated during the early development of the AM fungus Glomus mosseaeversus genes expressed in extraradical hyphae. The expression of several of the isolated genes was further confirmed by RT-PCR analysis. Among the isolated clones, a novel gene named GmGIN1 only expressed during early development in G. mosseae was found. The full-length GmGIN1 cDNA codes for a protein of 429 amino acids. The most interesting feature of the deduced protein is its two-domain structure with a putative self-splicing activity. The N-terminal domain shares sequence similarity with a novel family of GTP binding proteins while the C-terminus has a striking homology to the C-terminal part of the hedgehog protein family from metazoa. The C-terminal part of hedgehog proteins is known to participate in the covalent modification of the N-terminus by cholesterol, and in the self-splicing activity which renders the active form of the protein with signalling function. We speculate that the N-terminal part of GmGIN1, activated through a similar mechanism to the hedgehog proteins, has GTP-binding activity and participates in the signalling events prior to symbiosis formation.  相似文献   

5.
In cells of the eukaryotic microorganism Dictyostelium discoideum, at least eight small, four-EF-hand Ca2+-binding proteins of unknown function are expressed at specific times during development. One of these proteins, calcium-binding protein 1 (CBP1), first appears just prior to cell aggregation and then is present at relatively constant levels throughout development. To determine a role for CBP1 during development, the protein was used as bait in a yeast two-hybrid screen to reveal putative CBP1-interacting proteins. Two proteins identified in this screen were the actin-binding proteins, protovillin and EF-1α. Using an in vitro binding assay, both of these proteins were found to interact with CBP1 in the absence of Ca2+, but the interaction of CBP1 with EF-1α was increased substantially by Ca2+. CBP1 was also shown by fluorescence microscopy and by binding assays to associate with the actin cytoskeleton of Dictyostelium cells during development, and these interactions were partially Ca2+-dependent. cbpA-null cells grew normally, but under certain developmental conditions, cell aggregation was prolonged and irregular. This defect in aggregation appeared to be related to a general reduction in cell motility rather than to a decrease in the ability of the cells to respond to the chemoattractant cAMP. Together, these results suggest that CBP1 might function to help regulate the reorganization of the Dictyostelium actin cytoskeleton during cell aggregation.  相似文献   

6.
To investigate, the effects of hydrostatic pressure on transmembrane signaling in cold-adapted marine fishes, we examined the high-affinity GTPase activity in two congeneric marine fishes, Sebastolobus alascanus and S. altivelis. In brain membranes there are two GTPase activities, one with a low K m and one with a high K m for GTP. The high-affinity GTPase activity, characteristic of the subunits of the guanine nucleotide binding protein pool, was stimulated by the A1 adenosine receptor agonists N 6(R-phenylisopropyl)adenosine and N 6-cyclopentyladenosine, and the muscarinic cholinergic agonist carbamyl choline. Pertussis toxin-catalyzed ADP-ribosylation of the membranes for 2 h at 5°C prior to the GTPase assay decreased the basal GTPase activity 30–40% and abolished N 6 (R-phenylisopropyl)adenosine stimulation of GTP hydrolysis. Basal high-affinity hydrolysis of GTP, measured at 0.3 mol·1-1GTP, was stimulated 22% in both species by 340 atm pressure. At 340 atm pressure, the apparent K m of GTP is decreased approximately 10% in each of the species, and the V max values are increased 11 and 15.9% in S. alascanus and S. altivelis, respectively. The apparent volume changes associated with the decreased K m of GTP and the increased V max ranged from-7.0 to-9.9 ml·mol-1. Increased pressure markedly decreased the efficacy of N 6 (R-phenylisopropyl) adenosine, N 6-cylcopentyladenosine and carbamyl choline in stimulating GTPase activity. The effects of increased hydrostatic pressure on transmembrane signal transduction by the A1 adenosine receptor-inhibitory guanine nucleotide binding protein-adenylyl cyclase system may stem, at least in part, from pressure-increased GTP hydrolysis and the concomitant termination of inhibitory signal transduction.Abbreviations [3H] DPCPX 3H cyclopentyl-1, 3-dipropylxanthine - AppNHp 5-adenylylimidodiphosphate - cpm counts per minute - CPA N 6-cyclopentyladenosine - EDTA ethylenediaminetetra acetic acid - EGTA ethyleneglycol-bis (-aminoethylether) N, N, N, N-totra-acctic acid - G protein guanine nucleotide binding protein - Gi inhibitory G protein - Go other G protein, common in brain membranes - Gs stimulatory G protein - GTPase guanosine triphosphatase - K i inhibition constant - K m Michaelis constant - pK a log of the dissociation constant - R-PIA N 6 (R-phenylisopropyl) adenosine - TRIS tris[hydroxymethyl]aminomethane - Vmax maximal velocity - [-32P]GTP [-32P] guanosine 5-triphosphate (tetra (triethylammonium) salt)  相似文献   

7.
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26–52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future.  相似文献   

8.
The biochemical properties of Artemia ras proteins (p21) have been studied after immunoprecipitation with the monoclonal antibody Y13-259. The ras products bind GTP and GDP, and have GTPase activity. Artemia p21 was unable to hydrolyze GP4G, although this dinucleotide exhibits high affinity for the protein. Our results demonstrate that the protein(s) recognized by the Y13-259 antibody in this crustacean behave as typical mammalian ras p21s.  相似文献   

9.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the β-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn2+ and Ca2+ ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

10.
Summary By using an in vitro functional assay, we have shown that Drosophila embryonic cells possess Ca2+-dependent adhesive sites, which resemble in many respects those described for vertebrate cells and tissues. The cells, obtained by mechanical disruption of gastrulastage embryos, form aggregates within 30 min when maintained under constant rolling. The aggregation is completely dependent on the presence of Ca2+ in the medium. In its absence, the cells remain dispersed but the process is reversible by readdition of Ca2+. In addition the aggregation is temperature-dependent. No aggregation occurs at 4° C but it can be restored by raising the temperature to 25° C. These properties are characteristic of these cells: established cell lines do not aggregate under the same conditions and mixing of cell lines and embryonic cells does not result in chimeric aggregates, thus pointing towards cell-type selectivity with respect to aggregability. Observations in electron microscopy have shown that the embryonic cells in the aggregates tightly adhere to one another and form, as early as after 30 min, maculae adherens junctions. Drosophila embryonic cells have adhesion sites that are protected from trypsin proteolysis in the presence of Ca2+ and sensitive in its absence. The cells' aggregation can be inhibited by a mouse antiserum directed against cell-surface components and a good correlation exists between neutralization of the inhibitory activity of the antiserum and the presence of trypsin-sensitive sites on the cells. These data are in favour of cell-cell adhesion mediated by specific adhesion proteins.  相似文献   

11.
Summary Calsequestrin is a calcium binding protein present in the sarcoplasmic reticulum (SR) of animal muscle cells and is thought to be essential for the rapid uptake and release of Ca2+, and thus for the regulation of Ca2+-dependent cellular functions. Higher plant cells of red beet (Beta vulgaris L.) and cucumber (Cucumis sativus L.) contain a polypeptide of about Mr 55000 that cross-reacts with a monoclonal antibody raised against calsequestrin from rabbit skeletal muscle SR. In beet this protein changes its apparent molecular weight with pH as indicated in Western immunoblotting. Although this protein bound calcium it was not the dominant calcium-binding protein in red beet. Washing of beet root tissue leads to a slight increase of this polypeptide in microsomal fractions as indicated by immunoblotting. After immunoblotting to partially purified cell membrane fractions this polypeptide appeared to be predominantly associated with endoplasmic reticulum-enriched fractions. Immunogold labelling of ultrathin sections of cucumber hypocotyl using the anti-calsequestrin antibody showed that gold particles were very largely confined to the cytosol and often in close proximity to the ER. Clusters of up to nine gold particles were observed, often over small vesicular areas, as observed in some animal tissues. These results indicate that red beet and cucumber cells contain a protein which may be related to animal calsequestrin. It appears to be associated with the ER and could be involved in cellular calcium regulation.  相似文献   

12.
Cyclic GMP phosphodiesterase (PDE) is rod photoreceptor disk membrane-associated via C-terminal lipid tails. PDEδ, a recently identified subunit, was shown to disrupt PDE/membrane interaction under physiological conditions, without affecting PDE catalytic activity. We found that a PDEδ ortholog from the eyeless nematode Caenorhabditiselegans (termed CEδ) solubilizes bovine PDE in vitro with an EC50 very similar to PDEδ. Immobilized PDEδ and CEδ both bind, in addition to bovine PDE, an N-terminal fragment of human retinitis pigmentosa GTPase regulator, but not rhodopsin kinase and Ran binding protein 1. The results suggest that PDEδ and CEδ may regulate membrane binding of a variety of proteins in photoreceptors and other tissues.  相似文献   

13.
Studies were designed to investigate the effects of baicalein on mouse–rat hybrid retina ganglion cells (N18) to better understand its effect on apoptosis and apoptosis-related genes in vitro. Cell viability, reactive oxygen species (ROS), cytoplasmic Ca2+, mitochondrial membrane potential (MMP), apoptosis induction, and caspases-3 activity were examined by flow cytometric assay. Apoptosis-associated proteins such as p53, Bax, Bcl-2, cytochrome c, and caspase-3 were examined by Western blot. We demonstrated the increase in the levels of p53, Bax, and cytochrome c and decrease in the level of Bcl-2, which are associated with the induction of apoptotic cell death after 24 h treatment with baicalein in N18 cells. Baicalein induced an increase in the cytoplasmic levels of ROS and Ca2+ in 1 h and reached their peak at 3 h, and thereafter a loss of MMP by flow cytometry. We also demonstrated a release of the cytochrome c from mitochondria into cytosol and an activation of caspase-3, which led to the occurrence of apoptosis in N18 cells treated with baicalein by Western blot. Pretreatment was conducted with BAPTA (intracellular calcium chelator) in baicalein-treated cells, the decline of MMP was recovered, and the increase in the level of cytoplasmic Ca2+ was suppressed, and the proportion of apoptosis was also markedly diminished. In conclusion, our data suggests that oxidative stress and cellular Ca2+ modulates the baicalein-induced cell death via a Ca2+-dependent mitochondrial death pathway in N18 cells.  相似文献   

14.
Developmentally regulated G-proteins (DRGs) are a highly conserved family of GTP-binding proteins found in archaea, plants, fungi and animals, indicating important roles in fundamental pathways. Their function is poorly understood, but they have been implicated in cell division, proliferation, and growth, as well as several medical conditions. Individual subfamilies within the G-protein superfamily possess unique nucleotide binding and hydrolysis rates that are intrinsic to their cellular function, and so characterization of these rates for a particular G-protein may provide insight into its cellular activity. We have produced recombinant active DRG protein using a bacterial expression system and refolding, and performed biochemical characterization of their GTP binding and hydrolysis. We show that recombinant Arabidopsis thaliana atDRG1 and atDRG2a are able to bind GDP and GTP. We also show that DRGs can hydrolyze GTP in vitro without the assistance of GTPase-activating proteins and guanine exchange factors. The atDRG proteins hydrolyze GTP at a relatively slow rate (0.94 × 10−3 min−1 for DRG1 and 1.36 × 10−3 min−1 for DRG2) that is consistent with their nearest characterized relatives, the Obg subfamily. The ability of DRGs to bind nucleotide substrates without assistance, their slow rate of GTP hydrolysis, heat stress activation and domain conservation suggest a possible role as a chaperone in ribosome assembly in response to stress as it has been suggested for the Obg proteins, a different but related G-protein subfamily.  相似文献   

15.
动物胃肠道是食物消化和营养吸收器官,对机体健康至关重要。果蝇与哺乳动物的肠道在细胞组成、遗传调控等方面高度相似,是研究肠道发育的良好模型。体外培养细胞中的研究发现,Nprl2通过作用于Rag GTPase,抑制雷帕霉素靶点复合物1(target of rapamycin complex 1,TORC1)的活性,参与细胞代谢的调节。前期报道nprl2突变果蝇具有前胃增大、消化能力降低等肠道衰老相关表型。但对于Nprl2是否通过Rag GTPase调控肠道发育等方面尚不清楚。为了探究Rag GTPase在Nprl2调控果蝇肠道发育中的作用,本研究利用遗传杂交结合免疫荧光等方法对RagA敲减和nprl2突变果蝇的肠道形态、肠道细胞组成等方面进行研究。发现单独敲减RagA可以引起肠变粗、前胃增大等表型,敲减RagA能挽救nprl2突变体中肠道变细、分泌型细胞减少的表型,但并不能挽救nprl2突变体中前胃增大的表型。以上结果表明,RagA在肠道发育中发挥重要作用,Nprl2通过作用于Rag GTPase调节肠道细胞分化和肠道形态,但Nprl2对前胃发育和肠道的消化功能的调节可能通过不依赖于Rag GTPase的机制实现。  相似文献   

16.
Cuticle tissue homogenates (CTHs) fromCallinectes sapidus premolt cuticle bound approximately 367% more Ca2+ ions than did those from the postmolt cuticle. ThepH-stat assay which was used to comparein vitro CaCO3 nucleation times confirmed that the premolt CTHs had greater inhibitory activity than did the postmolt CTHs. This inhibitory activity was indicated by CaCO3 nucleation times in excess of control values. Premolt nucleation times exceeded those of postmolt samples by approximately 340%. A positive correlation was observed between Ca2+ binding and calcification inhibitory activity for both premolt and postmolt CTHs. Heat pretreatment of CTHs at 70°C for a 24-hr period had no significant effect on their Ca2+ binding. However, this heat pretreatment decreased their calcification inhibitory activity. Pretreatment of CTHs with Ca2+ diminished their calcification inhibitory activity. These results are consistent with a mechanism for inhibition of biocalcification by these proteins which involves their initial reversible binding to nascent calcite nuclei growth steps and kinks, rather than theirin vivo interaction with free Ca2+ ions in solution.  相似文献   

17.
Potassium channels control the repolarization of nerve terminals and thus play important roles in the control of synaptic transmission. Here we describe the effects of mutations in theslowpoke gene, which is the structural gene for a calcium activated potassium channel, on transmitter release at the neuromuscular junction inDrosophila melanogaster. Surprisingly, we find that theslowpoke mutant exhibits reduced transmitter release compared to normal. Similarly, theslowpoke mutation significantly suppresses the increased transmitter release conferred either by a mutation inShaker or by application of 4-aminopyridine, which blocks theShaker-encoded potassium channel at theDrosophila nerve terminal. Furthermore, theslowpoke mutation suppresses the striking increase in transmitter release that occurs following application of 4-aminopyridine to theether a go-go mutant. This suppression is most likely the result of a reduction of Ca2+ influx into the nerve terminal in theslowpoke mutant. We hypothesize that the effects of theslowpoke mutation are indirect, perhaps resulting from increased Ca2+ channel inactivation, decreased Na+ or Ca2+ channel localization or gene expression, or by increases in the expression or activity of potassium channels distinct fromslowpoke.  相似文献   

18.
To identify and characterize small GTP-binding proteins in plant cells, GTP-binding studies were performed with electroblotted plant proteins following SDS-polyacrylamide gel electrophoresis using [α-32P]GTP. Three species of small GTP-binding protein (21, 23, and 27 kD) which have a specific GTP-binding property were identified in the membrane and cytosolic fractions of both monocotyledons (Zea mays) and dicotyledons (Glycine max). Moreover, these three species of small GTP-binding protein were gradually decreased when membranes were treated with hydroxylamine. This result indicates that these small GTP-binding proteins in plant cells are fatty acylated to the membrane lipids. The 27 kDa component was partially purified from hypocotyl membranes of Glycinemax, following S-300 gel filtration, phenylsepharose CL-4B, hydroxyapatite, and Q-sepharose column chromatography. This 27 kD protein was found to have both GTP-binding and GTPase activities.  相似文献   

19.
The Arabidopsis genome encodes many secretory guaiacol peroxidases (class III plant peroxidases, EC 1.11.1.7). These higher plant enzymes are found either in the vacuole or in the apoplast, where several functions have been attributed to them. Their localisation within the cell wall matrix is most likely important for their activity. In the present work, a gel consisting of polygalacturonate chains cross-linked by Ca2+ and embedded in polyacrylamide was used to separate proteins from Arabidopsis leaves having an affinity for the Ca2+-mediated conformation of pectin. This chromatographic technique selected a small number of cationic isoperoxidases able to bind to Ca2+-pectate but not to Ca2+-alginate, a polyuronate gel similar to Ca2+-pectate. This result suggested that some of the Arabidopsis peroxidases have an affinity for pectin in vivo. Such a property could allow them to be properly distributed within the cell wall network. In addition, eleven cDNAs encoding an Arabidopsis peroxidase were expressed in the baculovirus-insect cell system. The capacity of the resulting recombinant peroxidases to bind Ca2+-pectate and Ca2+-alginate was also assessed. It appeared that 3 of them exhibited a Ca2+-pectate binding activity that was resistant to the action of NaCl. The binding of these recombinant peroxidases to Ca2+-alginate was much weaker than to Ca2+-pectate, confirming the specificity of the interaction with the pectic structure.  相似文献   

20.
Calcium signaling system in plants   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号