首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme oxygenase (HO) is a key enzyme in heme metabolism; it oxidatively degrades heme to biliverdin, accompanied by formation of free iron and carbon monoxide. Biliverdin is subsequently reduced by cytosolic biliverdin reductase to form bilirubin, a potent antioxidant. We recently found that tumor cells utilize HO to protect themselves from oxidative stress by producing the antioxidant bilirubin. This result suggested an important potential therapeutic strategy: suppression of bilirubin production with the use of HO inhibitors; hence, cancer cells become vulnerable to oxidative stress induced by anticancer drugs or leukocytes of the host. This concept was validated by using the intraarterial administration of an HO inhibitor, zinc protoporphyrin, in nonphysiological solution. In the present study, zinc protoporphyrin (ZnPP) was conjugated with poly(ethylene glycol) (PEG) with molecular weight of 5000, to make ZnPP, a water-soluble compound (PEG-ZnPP), and to improve its tumor-targeting efficiency. PEG was conjugated to ZnPP through newly introduced amino groups, where ethylenediamine residues were added at C6 and C7 of protoporphyrin. The divalent zinc cation was chelated into the protoporphyrin ring to obtain PEG-ZnPP. PEG-ZnPP did become highly water-soluble, and it formed multimolecular associations with molecules larger than 70 kDa in aqueous media. PEG-ZnPP inhibited splenic microsomal HO activity in vitro in a competitive manner in the presence of hemin, with an apparent inhibitory constant of 0.12 microM. Most important, PEG-ZnPP injected intravenously significantly suppressed intratumor HO activity in a murine solid tumor model, which suggests that tumor-targeted inhibition of HO is possible with the use of PEG-ZnPP.  相似文献   

2.
Metalloporphyrins (MPs) have been found to affect the production of carbon monoxide (CO) and nitric oxide (NO). Unlike that for CO, little is known about the mechanism of action of MPs on the NO system. We determined the in vitro ability of ferrous protoporphyrin (heme, FePP), zinc protoporphyrin (ZnPP), and bilirubin (BR) to scavenge NO. Heme and ZnPP were studied in the rat aortic ring system for their ability to affect phenylephrine-induced contraction and methacholine-stimulated relaxation. Heme was found to be a good NO scavenger with a ks = 0.53 +/- 0.19 x 10(4) M(-1)xs(-1) (n = 6). ZnPP and BR did not scavenge NO. Neither heme nor ZnPP treatment affected the phenylephrine response as measured by -logEC50 and the maximal effect. However, heme and ZnPP treatments decreased the -logEC50 and the maximal effects of methacholine, therefore decreasing vasorelaxation. We conclude that when ZnPP is administered in vivo blood pressure should be carefully monitored.  相似文献   

3.
Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and up-regulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis.  相似文献   

4.
Zinc protoporphyrin (ZnPP) has been found to have anticancer activity both in vitro and in vivo. We have recently demonstrated that ZnPP diminishes β-catenin protein expression in cancer cells. The present study examined the cellular mechanisms that mediate ZnPP’s suppression of β-catenin expression. We demonstrate that ZnPP induces a rapid degradation of the β-catenin protein in cancer cells, which is accompanied by a significant inhibition of proteasome activity, suggesting that proteasome degradation does not directly account for the suppression. The possibility that ZnPP induces β-catenin exportation was rejected by the observation that there was no detectable β-catenin protein in the conditioned medium after ZnPP treatment of cancer cells. Further experimentation demonstrated that ZnPP induces lysosome membrane permeabilization, which was reversed by pretreatment with a protein transportation inhibitor cocktail containing Brefeldin A (BFA) and Monensin. More significantly, pretreatment of cancer cells with BFA and Monensin attenuated the ZnPP-induced suppression of β-catenin expression in a concentration- and time-dependent manner, indicating that the lysosome protein degradation pathway is likely involved in the ZnPP-induced suppression of β-catenin expression. Whether there is cross-talk between the ubiquitin-proteasome system and the lysosome pathway that may account for ZnPP-induced β-catenin protein degradation is currently unknown. These findings provide a novel mechanism of ZnPP’s anticancer action and reveal a potential new strategy for targeting the β-catenin Wnt signaling pathway for cancer therapy.  相似文献   

5.
Carbon monoxide (CO) has been found to be produced in every living cell in a biochemical reaction catalyzed by heme-oxygenase (HO) enzyme which degrades heme into biliverdin, CO, and iron. Endogenous CO is not a waste product, but acts as a chemical messenger mediating and modulating many intracellular biochemical reactions that regulate physiological functions. This study was designed to investigate the effect of inhibition of endogenous CO production by zinc protoporphyrin (ZnPP), an HO inhibitor, on the gastric secretion and ulceration induced by cold-restraint stress (CRS) in adult male albino rats. Rats were pylorically ligated and divided randomly into the following groups (six rats each): control, ZnPP treated (50 μmol/kg/day, s.c. for 10 days), CRS, and stressed ZnPP treated groups. Blood samples were collected from the retro-orbital sinus of anesthetized rats for determination of CO concentration. We found that ZnPP pretreatment significantly decreased HO-1 level, CO level, and volume of gastric juice as compared to the control non-stressed rats. In the present study, ZnPP pretreatment proved to be protective against development of ulcerative lesions in CRS model as evidenced by reduction of the ulcer index, and this could be mediated through reduction of free and total acidity of gastric secretion and decreased lipid peroxidation but with significantly decreased gastric protective nitric oxide and prostaglandin E(2) levels. In conclusion and according to our results, the protective effect of ZnPP on CRS-induced gastric ulcers despite of inhibition of endogenous CO could be attributed to the presence of zinc which is known to have a protective anti-ulcer effect.  相似文献   

6.
Cancer cells acquire drug resistance via various mechanisms including enhanced cellular cytoprotective and antioxidant activities. Heme oxygenase-1 (HO-1) is a key enzyme exerting potent cytoprotection, cell proliferation and drug resistance. We aimed to investigate roles of HO-1 in human cholangiocarcinoma (CCA) cells for cytoprotection against chemotherapeutic agents. KKU-100 and KKU-M214 CCA cell lines with high and low HO-1 expression levels, respectively, were used to evaluate the sensitivity to chemotherapeutic agents, gemcitabine (Gem) and doxorubicin. Inhibition of HO-1 by zinc protoporphyrin IX (ZnPP) sensitized both cell types to the cytotoxicity of chemotherapeutic agents. HO-1 gene silencing by siRNA validated the cytoprotective effect of HO-1 on CCA cells against Gem. Induction of HO-1 protein expression by stannous chloride enhanced the cytoprotection and suppression of apoptosis caused by anticancer agents. The sensitizing effect of ZnPP was associated with increased ROS formation and loss of mitochondrial transmembrane potential, while Gem alone did not show any effects. A ROS scavenger, Tempol, abolished the sensitizing effect of ZnPP on Gem. Combination of ZnPP and Gem enhanced the release of cytochrome c and increased p21 levels. The results show that HO-1 played a critical role in cytoprotection in CCA cells against chemotherapeutic agents. Targeted inhibition of HO-1 may be a strategy to overcome drug resistance in chemotherapy of bile duct cancer.  相似文献   

7.
BACKGROUND: Human falciparum malaria, caused by the intracellular protozoa Plasmodium falciparum, results in 1-2 million deaths per year. P. falciparum digests host erythrocyte hemoglobin within its food vacuole, resulting in the release of potentially toxic free heme. A parasite-specific heme polymerization activity detoxifies the free heme by cross-linking the heme monomers to form hemozoin or malaria pigment. This biochemical process is the target of the widely successful antimalarial drug chloroquine, which is rapidly losing its effectiveness due to the spread of chloroquine resistance. We have shown that chloroquine resistance is not due to changes in the overall catalytic activity of heme polymerization or its chloroquine sensitivity. Therefore, the heme polymerization activity remains a potential target for novel antimalarials. In this study, we investigated the ability of heme analogs to inhibit heme polymerization and parasite growth in erythrocytes. MATERIALS AND METHODS: Incorporation of radioactive hemin substrate into an insoluble hemozoin pellet was used to determine heme polymerization. Incorporation of radioactive hypoxanthine into the nucleic acid of dividing parasites was used to determine the effects of heme analogs on parasite growth. Microscopic and biochemical measurements were made to determine the extent of heme analog entry into infected erythrocytes. RESULTS: The heme analogs tin protoporphyrin IX (SnPP), zinc protoporphyrin IX (ZnPP), and zinc deuteroporphyrin IX, 2,4 bisglycol (ZnBG) inhibited polymerization at micromolar concentrations (ZnPP << SnPP < ZnBG). However, they did not inhibit parasite growth since they failed to gain access to the site of polymerization, the parasite's food vacuole. Finally, we observed high ZnPP levels in erythrocytes from two patients with beta-thalassemia trait, which may inhibit heme polymerization. CONCLUSIONS: The heme analogs tested were able to inhibit hemozoin formation in Plasmodium falciparum trophozite extracts. The increased ZnPP levels found in thalassemic erythrocytes suggest that these may contribute, at least in part, to the observed antimalarial protection conferred by the beta-thalassemia trait. This finding may lead to the development of new forms of antimalarial therapy.  相似文献   

8.
9.
Pharmacological modulation of heme oxygenase (HO) gene expression may have significant therapeutic potential in oxidant-induced disorders, such as ischemia reperfusion (I/R) injury. Higenamine is known to reduce ischemic damages by unknown mechanism(s). The protective effect of higenamine on myocardial I/R-induced injury was investigated. Ligation of rat left anterior descending coronary artery for 30 min under anesthesia was done and followed by 24 h reperfusion before sacrifice. I/R-induced myocardial damages were associated with mitochondria-dependent apoptosis as evidenced by the increase of cytochrome c release and caspase-3 activity. Administration of higenamine (bolus, i.p) 1 h prior to I/R-injury significantly decreased the release of cytochrome c, caspase-3 activity, and Bax expression but up-regulated the expression of Bcl-2, HO-1, and HO enzyme activity in the left ventricles, which were inhibited by ZnPP IX, an enzyme inhibitor of HO-1. In addition, DNA-strand break-, immunohistochemical-analysis, and TUNEL staining also supported the anti-apoptotic effect of higenamine in I/R-injury. Most importantly, administration of ZnPP IX inhibited the beneficial effect of higenamine. Taken together, it is concluded that HO-1 plays a core role for the protective action of higenamine in I/R-induced myocardial injury.  相似文献   

10.
11.
Quantification of erythrocyte zinc protoporphyrin IX (ZnPP) and protoporphyrin IX (PPIX), individually or jointly, is useful for the diagnostic evaluation of iron deficiency, iron‐restricted erythropoiesis, lead exposure, and porphyrias. A method for simultaneous quantification of ZnPP and PPIX in unwashed blood samples is described, using dual‐wavelength excitation to effectively eliminate background fluorescence from other blood constituents. In blood samples from 35 subjects, the results of the dual‐wavelength excitation method and a reference high performance liquid chromatography (HPLC) assay were closely correlated both for ZnPP (rs = 0.943, p < 0.0001; range 37–689 μmol ZnPP/mol heme, 84–1238 nmol/L) and for PPIX (rs = 0.959, p < 0.0001; range 42–4212 μmol PPIX/mol heme, 93–5394 nmol/L). In addition, for ZnPP, the proposed method is compared with conventional single‐wavelength excitation and with commercial front‐face fluorimetry of washed erythrocytes and whole blood. We hypothesize that dual‐wavelength excitation fluorimetry will provide a new approach to the suppression of background fluorescence in blood and tissue measurements of ZnPP and PPIX. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
目的:探讨血红素-HO-1-CO-cGMP道路对内毒素血症大鼠主动脉血管张力的影响及其分子机制。方法:用离体血管环张力测定技术,观察静脉注射脂多糖(LPS)6h,大鼠胸主动脉环(TARs)对苯肾上腺素(PE)累积收缩反应。分别用一氧化碳(CO)供体正缺血红素(He),血红素氧合酶-1(HO-1)抑制剂锌原卟啉(ZnPP-IX),鸟苷酸环化酶(sGC)抑制剂亚甲兰(MB)预卵育后,测定TARs对PE收缩反应的变化。分别测定主动脉中CO含量,HO-1活性,Western blot测定HO-1蛋白含量,RT-PCR检测HO-1 mRNA表达的改变。结果:LPS组TARs对PE累积收缩反应明显降低,ZnPP-IX可部分逆转低收缩反应,MB可完全逆转低收缩反应,而用He可加重低收缩反应状态;LPS组动脉组织中CO的含量上升,HO-1活性、蛋白表达量和mRNA表达均明显增加。结论:LPS可使主动脉HO-1基因表达上调,蛋白含量及酶活性明显增加,表明启动血红素-HO-1-CO-cGMP通路,是介导ES大鼠主动脉低收缩反应重要机制之一。  相似文献   

14.
Coceani F  Kelsey L 《Life sciences》2000,66(26):2613-2623
We have proposed that endothelin-1 (ET-1), formed through the activation of a cytochrome P450 (CYP450)-based monooxygenase reaction, is important for generation of contractile tone in the ductus arteriosus and, consequently, for closure of the vessel at birth. The present investigation was undertaken to ascertain, using an isolated ductus preparation from near-term fetal lambs, whether carbon monoxide (CO) and nitric oxide (NO) qualify as regulators of the CYP450/ET-1 system. Preparations released ET-1 at rest and its amount showed no significant reduction following removal of the endothelium. Basal release was not changed by the NO synthesis inhibitor, N(G)-nitro-L-arginine methylester (L-NAME, 100 microM), nor by agents altering cyclic GMP content (i.e. increase; ONO-1505, 1 microM) and action (i.e. decrease; LY-83583, 10 microM). These findings extend previous work showing no effect of the CO synthesis inhibitor zinc protoporphyrin IX (ZnPP, 10 microM) under the same conditions (10). Conversely, both CO (65 microM) and the NO donor, sodium nitroprusside (SNP, 10 microM), curtailed ET-1 release. ET-1 release was increased by oxygen and reduced by pyrogens (endotoxin and IL-1, both at 100 ng mL(-1)). The endotoxin effect tended to be reversed by L-NAME and ZnPP, used singly or in combination. We conclude that ET-1 is formed naturally in the ductus and that its formation may change in response to physiological (oxygen) and pathophysiological (pyrogens) stimuli. Endogenous CO and NO, however, appear to have little or no role as ET-1 regulators.  相似文献   

15.
目的:探讨肢体缺血/再灌注(I/R)致肝脏损伤时肝组织诱导型血红素氧合酶(HO-1)表达的变化及其意义.方法:夹闭大鼠双侧股动脉根部4 h、开放2~24 h,制备肢体I/R模型.RT-PCR检测肝组织HO-1 mRNA表达的变化,免疫组化染色法观察HO-1蛋白在肝内的生成与分布.对肢体I/R大鼠应用锌原卟啉抑制其体内HO-1活性后,光镜观察其肝组织的病理变化.结果:肢体I/R后肝组织HO-1 mRNA的表达水平显著高于各对照组,再灌12 h表达至峰值,至再灌24 h仍显著高于各对照组(P<0.01).肢体I/R组肝组织内出现大量弥散分布的HO-1阳性肝细胞,抑制HO-1活性,使肢体I/R组肝组织损伤明显加重.结论:肢体I/R损伤可诱导肝细胞HO-1基因表达上调,所诱生的HO-1对肝细胞具有保护效应.  相似文献   

16.
目的:探讨姜黄素对小鼠胆管结扎所致的胆汁淤积性肝纤维化的保护作用,为肝纤维化治疗提供新的治疗方法。方法:42只健康成年雄性BALB/c小鼠随机分为假手术(n=6)处理组、假手术+姜黄素(n=6)处理组、胆管结扎(BDL)处理组(n=10)、BDL+姜黄素处理组(n=10),BDL+姜黄素+锌原卟啉(ZnPP)处理组(n=10)。BDL手术7 d后,假手术+姜黄素组、BDL+姜黄素组每日给予姜黄素(30 mg / kg)腹腔注射;BDL+姜黄素+ZnPP组每日给予姜黄素(30 mg / kg)以及nPP(50 μmol/ kg)腹腔注射;对于假手术组和BDL组,小鼠每天一次腹膜内注射等体积的盐水。整个给药过程持续7 d。小鼠BDL14 d后,取血和肝脏组织,检测谷草转氨酶(AST)、谷丙转氨酶(ALT)水平,观察肝组织病理形态变化、肝纤维化情况、检测肝组织中血红素加氧酶-1(HO-1)的蛋白表达。结果:与假手术组相比,BDL组小鼠肝脏胆囊肿大,血清谷草转氨酶(ALT)、谷丙转氨酶(AST)水平显著升高 (P<0.05),同时,天狼星红染色及促纤维化相关基因的qRT-PCR结果显示肝脏出现胶原蛋白沉积,巨噬细胞及中性粒细胞免疫组化结果显示肝脏出现炎性细胞浸润;与BDL组相比,姜黄素治疗组血清ALT、AST水平明显降低(P<0.05),胶原蛋白沉积及炎性细胞浸润情况有所改善,同时,补充姜黄素后HO-1表达升高(P<0.05);对姜黄素治疗组给予HO-1活性抑制剂ZnPP发现,姜黄素对肝损伤的保护作用被逆转。结论:姜黄素可以改善BDL所致的肝脏炎症及肝纤维化,这种保护作用可能与姜黄素调节HO-1活性有关。  相似文献   

17.
Noh EM  Cho DH  Lee YR  Jeong YJ  Kim JH  Chae HS  Park J  Jung WS  Park SJ  Kim JS 《BMB reports》2011,44(11):753-757
Heme oxygenase-1 (HO-1), an inducible enzyme with broad tissue expression, is wel1-regulated in response to hematopoietic stress and preserves vascular homeostasis. We investigated the involvement of HO-1 in HL-60 cell differentiation. Dimethyl sulfoxide (DMSO) completely decreased HO-1 expression in a time-dependent manner, but clearly induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression. Interestingly, zinc protoporphyrin (ZnPP), a strong inhibitor of HO-1, induced HL-60 cell differentiation. In contrast, treatment with cobalt protoporphyrin (CoPP), an activator of HO-1, decreased CD11b expression. Additionally, ZnPP downregulated HO-1 protein expression in HL-60 cells, whereas CoPP induced upregulation. These results suggest that HO-1 might have a negative function in DMSO-induced HL-60 cell differentiation. This study provides the first evidence that HO-1 plays an important role in DMSO-induced HL-60 cell differentiation.  相似文献   

18.
Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation.  相似文献   

19.
Wang GG  Lu XH  Ding M  Tang WT  Li W  Zhao X  Zhang C 《生理学报》2011,63(2):177-183
本研究用Sprague-Dawley大鼠建立肝脏缺血/再灌注损伤模型,探讨木犀草素预处理对大鼠肝脏缺血/再灌注损伤的保护作用及其机制,并观察血红素氧合酶-1(heme oxygenase-1,HO-1)活性变化对肝缺血/再灌注损伤的影响.将火鼠随机分为正常组、模犁组、木犀草素组、木犀草素+锌原卟啉(HO-1抑制剂)组及...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号