首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hef is an archaeal member of the DNA repair endonuclease XPF (XPF)/Crossover junction endonuclease MUS81 (MUS81)/Fanconi anemia, complementation group M (FANCM) protein family that in eukaryotes participates in the restart of stalled DNA replication forks. To investigate the physiological roles of Hef in maintaining genome stability in living archaeal cells, we studied the localization of Hef–green fluorescent protein fusions by fluorescence microscopy. Our studies revealed that Haloferax volcanii Hef proteins formed specific localization foci under regular growth conditions, the number of which specifically increased in response to replication arrest. Purification of the full-length Hef protein from its native host revealed that it forms a stable homodimer in solution, with a peculiar elongated configuration. Altogether our data indicate that the shape of Hef, significant physicochemical constraints and/or interactions with DNA limit the apparent cytosolic diffusion of halophilic DNA replication/repair complexes, and demonstrate that Hef proteins are dynamically recruited to archaeal eukaryotic-like chromatin to counteract DNA replication stress. We suggest that the evolutionary conserved function of Hef/FANCM proteins is to enhance replication fork stability by directly interacting with collapsed replication forks.  相似文献   

2.
Orthologs of Escherichia coli ygjD and yeaZ genes are highly conserved in various organisms. The genome of the radioresistant bacterium Deinococcus radiodurans possesses single orthologs of ygjD (DR_0382) and yeaZ (DR_0756). Complete loss of either one or both genes did not result in any significant changes in cell growth efficiency, indicating that both genes are not essential for cell viability in D. radiodurans, unlike the case with other species such as E. coli, Bacillus subtilis and Saccharomyces cerevisiae. Survival rates following DNA damage induced by hydrogen peroxide (H2O2), N-methyl-N??-nitro-N-nitrosoguanidine (MNNG), ultra violet (UV) radiation, ??-rays, cisplatin and mitomycin C (MMC) were compared among the wild-type strain and D. radiodurans ygjD/yeaZ null mutants. Cell viability of the null mutants did not decrease following exposure to H2O2 or MNNG. In addition, the reduction in cell viability following exposure to ??-rays, UV radiation or cisplatin was marginal in the null mutants compared to the wild-type strain. Interestingly, the null mutants exhibited high sensitivity to MMC, which mainly causes interstrand DNA cross-links. The sensitivity of the null mutants to MMC was restored to that of the wild type by transformation with plasmids expressing these genes. These results suggest that D. radiodurans ygjD and yeaZ genes are involved in DNA repair and play a role in the repair of DNA cross-links.  相似文献   

3.
DNA microarray technology was used to survey changes in gene expression in Pseudomonas fluorescens after mitomycin C treatment. As expected, genes associated with the SOS response were upregulated, such as those encoding the recombination protein RecA, DNA repair protein RecN, excinuclease ABC subunit A UvrA, and the LexA repressor protein. Interestingly, expression of 33 clustered bacteriophage-like genes was upregulated, suggesting that mitomycin C (MMC) may induce a prophage resident in the P. fluorescens genome. However, no phage particles were detected in P. fluorescens strain DC206 that had been treated with MMC using transmission electron microscopy. The same preparation failed to produce phage plaques on lawns of any of 10 different Pseudomonas strains tested, indicating that the 33 bacteriophage-like gene cluster represents a defective prophage.  相似文献   

4.
5.
6.
The sliding clamp proliferating cell nuclear antigen (PCNA) plays a vital role in a number of DNA repair pathways in eukaryotes and archaea by acting as a stable platform onto which other essential protein factors assemble. Many of these proteins interact with PCNA via a short peptide sequence known as a PIP (PCNA interacting protein) motif. Here we describe the identification and functional analysis of a novel PCNA interacting protein NreA that is conserved in the archaea and that has a PIP motif at its C‐terminus. Using the genetically tractable euryarchaeon Haloferax volcanii as a model system, we show that the NreA protein is not required for cell viability but that loss of NreA (or replacement of the wild‐type protein with a truncated version lacking the C‐terminal PIP motif) results in an increased sensitivity to the DNA damaging agent mitomycin C (MMC) that correlates with delayed repair of MMC‐induced chromosomal DNA damage monitored by pulsed‐field gel electrophoresis. Genetic epistasis analysis in Hfx. volcanii suggests that NreA works together with the UvrABC proteins in repairing DNA damage resulting from exposure to MMC. The wide distribution of NreA family members implies an important role for the protein in DNA damage repair in all archaeal lineages.  相似文献   

7.
The helicase-associated endonuclease for fork-structured DNA (Hef) is an archaeabacterial protein that processes blocked replication forks. Here we have isolated the vertebrate Hef ortholog and investigated its molecular function. Disruption of this gene in chicken DT40 cells results in genomic instability and sensitivity to DNA cross-links. The similarity of this phenotype to that of cells lacking the Fanconi anemia-related (FA) tumor-suppressor genes led us to investigate whether Hef functions in this pathway. Indeed, we found a genetic interaction between the FANCC and Hef genes. In addition, Hef is a component of the FA nuclear protein complex that facilitates its DNA damage-inducible chromatin localization and the monoubiquitination of the FA protein FANCD2. Notably, Hef interacts directly with DNA structures that are intermediates in DNA replication. This discovery sheds light on the origins, regulation and molecular function of the FA tumor-suppressor pathway in the maintenance of genome stability.  相似文献   

8.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

9.
DNA in Methanothermus fervidus, a hyperthermophilic archaeon, is constrained into archaeal nucleosomes in vivo by the archaeal histones HMfA and HMfB. Here, we document the translational and rotational positioning of archaeal nucleosome assembly in vitro by a sequence from the 7S RNA encoding region of the M. fervidus genome. The minor groove of the DNA at the center of the DNA sequence, protected from micrococcal nuclease digestion by incorporation into a positioned archaeal nucleosome, faces away from the archaeal histone core.  相似文献   

10.
DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.  相似文献   

11.
Hef is an archaeal protein that probably functions mainly in stalled replication fork repair. The presence of an unstructured region was predicted between the two distinct domains of the Hef protein. We analyzed the interdomain region of Thermococcus kodakarensis Hef and demonstrated its disordered structure by CD, NMR, and high speed atomic force microscopy (AFM). To investigate the functions of this intrinsically disordered region (IDR), we screened for proteins interacting with the IDR of Hef by a yeast two-hybrid method, and 10 candidate proteins were obtained. We found that PCNA1 and a RecJ-like protein specifically bind to the IDR in vitro. These results suggested that the Hef protein interacts with several different proteins that work together in the pathways downstream from stalled replication fork repair by converting the IDR structure depending on the partner protein.  相似文献   

12.
The XPF/Rad1/Mus81-dependent nuclease family specifically cleaves branched structures generated during DNA repair, replication, and recombination, and is essential for maintaining genome stability. Here, we report the domain organization of an archaeal homolog (Hef) of this family and the X-ray crystal structure of the middle domain, with the nuclease activity. The nuclease domain architecture exhibits remarkable similarity to those of restriction endonucleases, including the correspondence of the GDX(n)ERKX(3)D signature motif in Hef to the PDX(n)(E/D)XK motif in restriction enzymes. This structural study also suggests that the XPF/Rad1/Mus81/ERCC1 proteins form a dimer through each interface of the nuclease domain and the helix-hairpin-helix domain. Simultaneous disruptions of both interfaces result in their dissociation into separate monomers, with strikingly reduced endonuclease activities.  相似文献   

13.
26 mutants with increased sensitivity to the lethal effects of mitomycin C (MMC) were isolated from mouse lymphoma L5178Y cells by a replica-plating technique. Most of them were about 5-10 times more sensitive in terms of D37 values to MMC than were parental cells. 5 of the MMC-sensitive mutants isolated from independently mutagenized cell populations were further analyzed. They were highly sensitive to the killing by decarbamoyl (DC) MMC, a monofunctional derivative of MMC, but were not sensitive to ultraviolet radiation, X-rays, 4-nitroquinoline-1-oxide or methyl methanesulfonate. These 5 mutants were classified into at least 2 genetic complementation groups. The implication of these mutations in cross-link and mono-adduct repair of DNA damage induced by MMC and DCMMC is discussed.  相似文献   

14.
The repair of mitomycin C (MMC)-induced DNA crosslinking was analyzed by denaturation-renaturation gel electrophoresis in ribosomal RNA genes in lymphoblastoid cell lines from 4 patients with Fanconi's anemia (FA). In comparison to normal lymphoblastoid cell lines, 2 lines of FA cells belonging to complementation group A clearly exhibited higher sensitivity to MMC and an almost identical deficiency in the removal of DNA crosslinking. A complementation group B cell line, HSC 62, exhibited a lower sensitivity than group A cells and a lesser deficiency in crosslink repair. Another 'non-A' group cell line, HSC 230, reproducibly exhibited even higher sensitivity to MMC than group A cells. The results on MMC crosslinkage removal at the molecular level correlated well with cell survival. The observed subtle differences of repair among the 4 FA cell lines might represent possible genetic differences in the respective FA complementation groups.  相似文献   

15.
Two histone genes, hpkA and hpkB, from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 strain were cloned, sequenced, and expressed in Escherichia coli cells. Both hpkA and hpkB genes encoded a protein of 67 amino acids, however they possessed the different molecular weight (HpkA, 7,378:HpkB, 7,167). Deduced amino acid sequences of HpkA and HpkB were homologous to other archaeal histones and eucaryal core histones (H2A, H4). Gel mobility shift assays by purified proteins demonstrated that HpkB possessed higher affinity to DNA and more extensive ability to compact DNA than HpkA. HpkB prevented double stranded DNA from thermal denaturation in less amount than HpkA in vitro. In order to investigate intracellular contents of HpkA and HpkB in KOD1 cells, immunoblot analysis was performed by using anti-HpkA antisera obtained from immunized BALB/c mice, showing that HpkA was less abundantly expressed than HpkB in KOD1 cells. These results suggest that HpkB plays a major role to protect double stranded DNA from thermal denaturation in vivo.  相似文献   

16.
The XPF/MUS81 family of endonucleases is found in eukaryotes and archaea, in the former they play a critical role in DNA repair and replication fork restart. Hef is a XPF/MUS81 family member found in Euryarchaea and is related to the Fanconi anemia protein FANCM. We have studied the role of Hef in the euryarchaeon Haloferax volcanii. Unlike Xpf in eukaryotes, Hef is not involved in nucleotide excision repair; instead, this function is encoded by the uvrABC genes. Similarly, deletion of hef confers only moderate sensitivity to DNA crosslinking agents, whereas mutation of FANCM in leads to hypersensitivity in eukaryotes. However, Hef is essential for cell viability when the Holliday junction resolvase Hjc is absent, and both the helicase and nuclease activities of Hef are indispensable. By contrast, single mutants of hjc and hef display no significant defects in growth or homologous recombination. This suggests that Hef and Hjc are redundant for the resolution of recombination intermediates, and that Hef is the functional homolog of eukaryotic Mus81. Furthermore, deletion of hef in a recombination-deficient ΔradA background is highly deleterious but deletion of hjc has no effect. Therefore, Hjc acts exclusively in homologous recombination whereas Hef, in addition to its role in resolving recombination intermediates, can act in a pathway that avoids the use of homologous recombination. We propose that Hef and Hjc provide alternative means to restart stalled DNA replication forks.  相似文献   

17.
The hyperthermophilic euryarchaeon Pyrococcus abyssi and the related species Pyrococcus furiosus and Pyrococcus horikoshii, whose genomes have been completely sequenced, are presently used as model organisms in different laboratories to study archaeal DNA replication and gene expression and to develop genetic tools for hyperthermophiles. We have performed an extensive re-annotation of the genome of P. abyssi to obtain an integrated view of its phylogeny, molecular biology and physiology. Many new functions are predicted for both informational and operational proteins. Moreover, several candidate genes have been identified that might encode missing links in key metabolic pathways, some of which have unique biochemical features. The great majority of Pyrococcus proteins are typical archaeal proteins and their phylogenetic pattern agrees with its position near the root of the archaeal tree. However, proteins probably from bacterial origin, including some from mesophilic bacteria, are also present in the P. abyssi genome.  相似文献   

18.
The rare hereditary disorder Fanconi anemia (FA) is characterized by progressive bone marrow failure, congenital skeletal abnormality, elevated susceptibility to cancer, and cellular hypersensitivity to DNA cross-linking chemicals and sometimes other DNA-damaging agents. Molecular cloning identified six causative genes (FANCA, -C, -D2, -E, -F, and -G) encoding a multiprotein complex whose precise biochemical function remains elusive. Recent studies implicate this complex in DNA damage responses that are linked to the breast cancer susceptibility proteins BRCA1 and BRCA2. Mutations in BRCA2, which participates in homologous recombination (HR), are the underlying cause in some FA patients. To elucidate the roles of FA genes in HR, we disrupted the FANCG/XRCC9 locus in the chicken B-cell line DT40. FANCG-deficient DT40 cells resemble mammalian fancg mutants in that they are sensitive to killing by cisplatin and mitomycin C (MMC) and exhibit increased MMC and radiation-induced chromosome breakage. We find that the repair of I-SceI-induced chromosomal double-strand breaks (DSBs) by HR is decreased approximately 9-fold in fancg cells compared with the parental and FANCG-complemented cells. In addition, the efficiency of gene targeting is mildly decreased in FANCG-deficient cells, but depends on the specific locus. We conclude that FANCG is required for efficient HR-mediated repair of at least some types of DSBs.  相似文献   

19.
In archaea, the HEL308 homolog Hel308a(or Hjm) is implicated in stalled replication fork repair. The biochemical properties and structures of Hjm homologs are well documented, but in vivo mechanistic information is limited. Herein, a structure-based functional analysis of Hjm was performed in the genetically tractable hyperthermophilic archaeon, Sulfolobus islandicus. Results showed that domain V and residues within it, which affect Hjm activity and regulation, are essential and that the domain V-truncated mutants and sitedirected mutants within domain V cannot complement hjm chromosomal deletion. Chromosomal hjm deletion can be complemented by ectopic expression of hjm under the control of its native promoter but not an artificial arabinose promoter. Cellular Hjm levels are kept constant under ultraviolet(UV) and methyl methanesulfonate(MMS) treatment conditions in a strain carrying a plasmid to induce Hjm overexpression. These results suggest that Hjm expression and activity are tightly controlled, probably at the translational level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号